Exemple #1
0
    def draw_clusters(self,
                      N,
                      cluster_size,
                      hard_radius=None,
                      separation=0,
                      margin=None):
        """Draws N clusters at random locations, using minimum separation
        and a margin. If separation > 0, less than N features may be drawn."""
        if hard_radius is None:
            hard_radius = self.hard_radius
        if margin is None:
            margin = self.hard_radius
        if margin is None:
            margin = 0
        pos = gen_random_locations(self.shape, N, margin)
        if separation > 0:
            pos = drop_close(pos, separation)

        if self.ndim == 2:
            angles = np.random.uniform(0, 2 * np.pi, N)
        elif self.ndim == 3:
            angles = np.random.uniform(0, 2 * np.pi, (N, 3))

        for p, a in zip(pos, angles):
            self.draw_cluster(cluster_size, p, a, hard_radius)
        return pos
Exemple #2
0
def gen_nonoverlapping_locations(shape, count, separation, margin=0):
    """ Generates `count` number of positions within `shape`, that have minimum
    distance `separation` from each other. The number of positions returned may
    be lower than `count`, because positions too close to each other will be
    deleted. If a `margin` is given, positions will be inside this margin.
    Margin may be tuple-valued.
    """
    positions = gen_random_locations(shape, count, margin)
    return drop_close(positions, separation)
Exemple #3
0
def gen_nonoverlapping_locations(shape, count, separation, margin=0):
    """ Generates `count` number of positions within `shape`, that have minimum
    distance `separation` from each other. The number of positions returned may
    be lower than `count`, because positions too close to each other will be
    deleted. If a `margin` is given, positions will be inside this margin.
    Margin may be tuple-valued.
    """
    positions = gen_random_locations(shape, count, margin)
    return drop_close(positions, separation)
Exemple #4
0
 def draw_features(self, N, separation=0, margin=None):
     """Draws N features at random locations, using minimum separation
     and a margin. If separation > 0, less than N features may be drawn."""
     if margin is None:
         margin = self.hard_radius
     if margin is None:
         margin = 0
     pos = gen_random_locations(self.shape, N, margin)
     if separation > 0:
         pos = drop_close(pos, separation)
     for p in pos:
         self.draw_feature(p)
     return pos
Exemple #5
0
 def draw_features(self, N, separation=0, margin=None):
     """Draws N features at random locations, using minimum separation
     and a margin. If separation > 0, less than N features may be drawn."""
     if margin is None:
         margin = self.hard_radius
     if margin is None:
         margin = 0
     pos = gen_random_locations(self.shape, N, margin)
     if separation > 0:
         pos = drop_close(pos, separation)
     for p in pos:
         self.draw_feature(p)
     return pos
Exemple #6
0
    def draw_clusters(self, N, cluster_size, hard_radius=None, separation=0,
                      margin=None):
        """Draws N clusters at random locations, using minimum separation
        and a margin. If separation > 0, less than N features may be drawn."""
        if hard_radius is None:
            hard_radius = self.hard_radius
        if margin is None:
            margin = self.hard_radius
        if margin is None:
            margin = 0
        pos = gen_random_locations(self.shape, N, margin)
        if separation > 0:
            pos = drop_close(pos, separation)

        if self.ndim == 2:
            angles = np.random.uniform(0, 2*np.pi, N)
        elif self.ndim == 3:
            angles = np.random.uniform(0, 2*np.pi, (N, 3))

        for p, a in zip(pos, angles):
            self.draw_cluster(cluster_size, p, a, hard_radius)
        return pos