Exemple #1
0
def gro_to_tracks(filename, destination, sub=slice(None), clear=True):
    gro_reader = GroReader(filename, sub)
    num_atoms = gro_reader.num_atoms

    names = ["time"]
    fields = [("time", numpy.float32)]
    names.extend(sum((
        ["atom.pos.%07i.x" % index, "atom.pos.%07i.y" % index,
         "atom.pos.%07i.z" % index]
        for index in xrange(num_atoms)
    ), []))
    fields.append(("pos", numpy.float32, (num_atoms,3)))
    names.extend(sum((
        ["atom.vel.%07i.x" % index, "atom.vel.%07i.y" % index,
         "atom.vel.%07i.z" % index]
        for index in xrange(num_atoms)
    ), []))
    fields.append(("vel", numpy.float32, (num_atoms,3)))
    names.extend([
        "cell.a.x", "cell.b.x", "cell.c.x",
        "cell.a.y", "cell.b.y", "cell.c.y",
        "cell.a.z", "cell.b.z", "cell.c.z",
    ])
    fields.append(("cell", numpy.float32, (3,3)))

    dtype = numpy.dtype(fields)
    filenames = [os.path.join(destination, name) for name in names]
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    for time, pos, vel, cell in gro_reader:
        mtw.dump_row((time, pos, vel, cell))
    mtw.finish()
Exemple #2
0
def atrj_to_tracks(filename, destination, sub=slice(None), atom_indexes=None, clear=True):
    atrj_reader = ATRJReader(filename, sub)

    if atom_indexes is None:
        atom_indexes = range(atrj_reader.num_atoms)
    else:
        atom_indexes = list(atom_indexes)

    filenames = []
    fields = []

    for index in atom_indexes:
        for cor in ["x", "y", "z"]:
            filenames.append(os.path.join(destination, "atom.pos.%07i.%s" % (index, cor)))
    fields.append( ("cor", float, (len(atom_indexes),3)) )
    filenames.append(os.path.join(destination, "time"))
    fields.append( ("time", float, 1) )
    filenames.append(os.path.join(destination, "step"))
    fields.append( ("step", int, 1) )
    filenames.append(os.path.join(destination, "total_energy"))
    fields.append( ("tote", float, 1) )

    dtype = numpy.dtype(fields)
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    for frame in atrj_reader:
        mtw.dump_row((
           frame.coordinates[atom_indexes],
           frame.time, frame.step, frame.total_energy
        ))
    mtw.finish()
Exemple #3
0
def cpmd_traj_to_tracks(filename, num_atoms, destination, sub=slice(None), atom_indexes=None, clear=True):
    """Convert a cpmd trajectory file into separate tracks.

    num_atoms must be the number of atoms in the system.
    """
    if atom_indexes is None:
        atom_indexes = range(num_atoms)
    else:
        atom_indexes = list(atom_indexes)
    names = []
    for index in atom_indexes:
        names.append("atom.pos.%07i.x" % index)
        names.append("atom.pos.%07i.y" % index)
        names.append("atom.pos.%07i.z" % index)
    for index in atom_indexes:
        names.append("atom.vel.%07i.x" % index)
        names.append("atom.vel.%07i.y" % index)
        names.append("atom.vel.%07i.z" % index)
    filenames = list(os.path.join(destination, name) for name in names)

    shape = (len(atom_indexes), 3)
    dtype = numpy.dtype([("pos", float, shape), ("vel", float, shape)])
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)

    ctr = CPMDTrajectoryReader(filename, sub)
    for pos, vel in ctr:
        mtw.dump_row((pos,vel))
    mtw.finish()
Exemple #4
0
def cpmd_ener_to_tracks(filename, destination, sub=slice(None), clear=True):
    """Convert a cp2k energy file into separate tracks."""
    names = ["step", "fict_kinectic_energy", "temperature", "potential_energy", "classical_energy", "hamiltonian_energy", "ms_displacement"]
    filenames = list(os.path.join(destination, name) for name in names)
    dtypes = [int, float, float, float, float, float, float]
    dtype = numpy.dtype([  (name, t, 1) for name, t in zip(names, dtypes)  ])
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    f = file(filename)
    for line in itertools.islice(f, sub.start, sub.stop, sub.step):
        row = tuple(float(word) for word in line.split()[:7])
        mtw.dump_row(row)
    f.close()
    mtw.finish()
Exemple #5
0
def cp2k_ener_to_tracks(filename, destination, sub=slice(None), clear=True):
    """Convert a cp2k energy file into separate tracks."""
    names = ["step", "time", "kinetic_energy", "temperature", "potential_energy", "conserved_quantity"]
    filenames = list(os.path.join(destination, name) for name in names)
    dtypes = [int, float, float, float, float, float]
    dtype = numpy.dtype([  (name, t, 1) for name, t in zip(names, dtypes)  ])
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    f = file(filename)
    for line in itertools.islice(iter_real_lines(f), sub.start, sub.stop, sub.step):
        row = [float(word) for word in line.split()[:6]]
        row[1] = row[1]*femtosecond
        mtw.dump_row(tuple(row))
    f.close()
    mtw.finish()
Exemple #6
0
def cp2k_stress_to_tracks(filename, destination, sub=slice(None), clear=True):
    names = ["step", "time", "stress.xx", "stress.xy", "stress.xz", "stress.yx", "stress.yy", "stress.yz", "stress.zx", "stress.zy", "stress.zz", "pressure"]
    filenames = list(os.path.join(destination, name) for name in names)
    dtype = numpy.dtype([("step", int),("time", float),("stress", float, (3,3)),("pressure", float)])
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    f = file(filename)
    for line in itertools.islice(iter_real_lines(f), sub.start, sub.stop, sub.step):
        values = [float(word) for word in line.split()[:11]]
        row = [int(values[0]),values[1]*femtosecond]
        cell = numpy.array(values[2:11]).reshape(3,3).transpose()*bar
        row.append(cell)
        row.append((cell[0,0]+cell[1,1]+cell[2,2])/3)
        mtw.dump_row(tuple(row))
    f.close()
    mtw.finish()
Exemple #7
0
def xyz_to_tracks(filename, middle_word, destination, sub=slice(None), file_unit=angstrom, atom_indexes=None, clear=True):
    """Convert an xyz file into separate tracks."""
    xyz_reader = XYZReader(filename, sub, file_unit=file_unit)

    filenames = []
    if atom_indexes is None:
        atom_indexes = range(len(xyz_reader.numbers))
    else:
        atom_indexes = list(atom_indexes)
    for index in atom_indexes:
        for cor in ["x", "y", "z"]:
            filenames.append(os.path.join(destination, "atom.%s.%07i.%s" % (middle_word, index, cor)))

    shape = (len(atom_indexes),3)
    dtype = numpy.dtype([("cor", float, shape)])
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    for title, coordinates in xyz_reader:
        mtw.dump_row((coordinates[atom_indexes],))
    mtw.finish()
Exemple #8
0
def cp2k_cell_to_tracks(filename, destination, sub=slice(None), clear=True):
    names = ["step", "time", "cell.a.x", "cell.a.y", "cell.a.z", "cell.b.x", "cell.b.y", "cell.b.z", "cell.c.x", "cell.c.y", "cell.c.z", "volume", "cell.a", "cell.b", "cell.c", "cell.alpha", "cell.beta", "cell.gamma"]
    filenames = list(os.path.join(destination, name) for name in names)
    dtype = numpy.dtype([("step", int),("time", float),("cell", float, (3,3)),("volume", float),("norms", float, 3),("angles", float, 3)])
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    f = file(filename)
    for line in itertools.islice(iter_real_lines(f), sub.start, sub.stop, sub.step):
        values = [float(word) for word in line.split()[:12]]
        row = [int(values[0]),values[1]*femtosecond]
        cell = numpy.array(values[2:11]).reshape(3,3).transpose()*angstrom
        row.append(cell)
        row.append(values[11] * angstrom**3)
        norms = numpy.sqrt((cell**2).sum(axis=0))
        row.append(norms)
        alpha = numpy.arccos(numpy.clip(numpy.dot(cell[:,1],cell[:,2])/norms[1]/norms[2], -1,1))
        beta = numpy.arccos(numpy.clip(numpy.dot(cell[:,2],cell[:,0])/norms[2]/norms[0], -1,1))
        gamma = numpy.arccos(numpy.clip(numpy.dot(cell[:,0],cell[:,1])/norms[0]/norms[1], -1,1))
        row.append(numpy.array([alpha,beta,gamma]))
        mtw.dump_row(tuple(row))
    f.close()
    mtw.finish()
Exemple #9
0
def lammps_dump_to_tracks(filename, destination, meta, sub=slice(None), clear=True):

    units = []
    for unit, name, isvector in meta:
        if isvector:
            units.extend([unit, unit, unit])
        else:
            units.append(unit)

    dump_reader = LAMMPSDumpReader(filename, units, sub)
    num_atoms = dump_reader.num_atoms

    filenames = [os.path.join(destination, "step")]
    fields = [("step", int)]

    for unit, name, isvector in meta:
        if isvector:
            for i in xrange(num_atoms):
                filenames.append(os.path.join(destination, "atom.%s.%07i.x" % (name, i)))
            fields.append(("atom.%s.x" % name, float, num_atoms))
            for i in xrange(num_atoms):
                filenames.append(os.path.join(destination, "atom.%s.%07i.y" % (name, i)))
            fields.append(("atom.%s.y" % name, float, num_atoms))
            for i in xrange(num_atoms):
                filenames.append(os.path.join(destination, "atom.%s.%07i.z" % (name, i)))
            fields.append(("atom.%s.z" % name, float, num_atoms))
        else:
            for i in xrange(num_atoms):
                filenames.append(os.path.join(destination, "atom.%s.%07i" % (name, i)))
            fields.append(("atom.%s" % name, float, num_atoms))


    dtype = numpy.dtype(fields)
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    for frame in dump_reader:
        mtw.dump_row(tuple(frame))
    mtw.finish()
Exemple #10
0
def dlpoly_output_to_tracks(
    filename, destination, sub=slice(None), clear=True, skip_equi_period=True,
    pos_unit=angstrom, time_unit=picosecond, angle_unit=deg, e_unit=amu/(angstrom/picosecond)**2
):
    output_reader = DLPolyOutputReader(filename, sub, skip_equi_period, pos_unit, time_unit, angle_unit, e_unit)

    filenames = [
        "step", "conserved_quantity", "temperature", "potential_energy",
        "vanderwaals_energy", "coulomb_energy", "bond_energy", "bending_energy",
        "torsion_energy", "tethering_energy", "time", "enthalpy",
        "rotational_temperature", "virial", "vanderwaals_virial",
        "coulomb_virial", "bond_viral", "bending_virial", "constraint_virial",
        "tethering_virial", "cputime", "volume", "shell_temperature",
        "shell_energy", "shell_virial", "cell.alpha", "cell.beta", "cell.gamma",
        "pmf_virial", "pressure",
    ]
    filenames = [os.path.join(destination, filename) for filename in filenames]
    fields = [("step", int)] + [("foo%i" % i, float) for i in xrange(29)]

    dtype = numpy.dtype(fields)
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    for row in output_reader:
        mtw.dump_row(tuple(row))
    mtw.finish()
Exemple #11
0
    def init_proj(self, output_prefix=None):
        """Setup the projection of the trajectory on the pca eigenmodes.

           When output prefix is given, the principal components are written
           to tracks with the following filenames: ${output_prefix}.${index}.

           After init_proj, call data_proj one or more times with the relevant
           data segments from the trajectory. Finally, call finish_proj.
        """
        N = len(self.evals)
        if output_prefix is not None:
            paths_out = [
                "%s.pc.%07i" % (output_prefix, index)
                for index in xrange(N)
            ]
            dtype = numpy.dtype([("data", float, N)])
            self.proj_mtw = MultiTracksWriter(paths_out, dtype)
        else:
            self.proj_mtw = None
        self.sqnorms_data = numpy.zeros(N, float)
        self.sqnorms_cos = numpy.zeros(N, float)
        self.dot_data_cos = numpy.zeros(N, float)
        self.proj_counter = 0
Exemple #12
0
class CovarianceMatrix(object):
    """A container for all information related to a covariance matrix."""
    def __init__(self, length, matrix, sum, weights=None, correlation=False, reference=None):
        """Initialize a covariance matrix object

           The arguments to initialize a CovarianceMatrix instance are built up
           by processing a trajectory. Look at CovarianceBlocks for an example.
           They are all stored as attributes. Also some direved properties are
           computed during the initialization. In a second stage, one can
           reprocess that data with init_proj, data_proj and finish_proj to
           compute the principal components and the cosine content.

           Arguments:
             length  --  the length of (a part of) the trajectory used to
                         construct the matrix
             matrix  --  the matrix built up by adding
                         numpy.data(data.transpose(),data) for multiple data
                         arrays belonging to one block
             sum  --  the sum of the data over time

           Optional arguments:
             weights  --  When given, the principal components are computed in
                          weighted coordinates.
             correlation  --  When True, the analysis is performed on the matrix
                              with correlation coefficients. This might be usefull
                              to compare the eigenvalue spectrum with the Wishart
                              distribution.
             reference  --  When given, the reference is assumed to be the vector
                            with the averages of the inputs. Otherwise, the averages
                            are derived from the input.

           Derive attributes:
             cov  --  The actual covariance/correlation matrix
             mean  --  The average of the inputs over time
             evals  --  The eigenvalues of the covariance matrix
             evecs  --  The corresponding eigenvectors
             sigmas  --  The square roots of the eigenvalues.

           Attributes available after projection:
             sqnorms_data  --  squared norms of the principal components
             sqnorms_cos  --  squared norms of the cosines
             dot_data_cos  --  inner product between principal component and
                               cosine
             ccs  --  the cosine contents of each principal component
        """
        # the raw data
        self.length = length
        self.matrix = matrix
        self.sum = sum
        self.weights = weights
        self.correlation = correlation
        self.reference = reference
        # the derived properties
        self.cov = self.matrix / self.length # the actual covariance matrix
        if self.reference is None:
            self.mean = self.sum / self.length
        else:
            self.mean = self.reference
        self.cov -= numpy.outer(self.mean, self.mean)
        if self.correlation:
            diag_sqrt = numpy.sqrt(numpy.diag(self.cov))
            self.cov /= numpy.outer(diag_sqrt, diag_sqrt)
        elif self.weights is not None:
            scale = numpy.sqrt(self.weights)
            self.cov *= numpy.outer(scale, scale)
        # the eigen decomposition
        self.evals, self.evecs = numpy.linalg.eigh(self.cov)
        # largest eigenvalues first
        self.evals = self.evals[::-1]
        self.evecs = self.evecs[:,::-1]
        self.sigmas = numpy.sqrt(abs(self.evals))

    def init_proj(self, output_prefix=None):
        """Setup the projection of the trajectory on the pca eigenmodes.

           When output prefix is given, the principal components are written
           to tracks with the following filenames: ${output_prefix}.${index}.

           After init_proj, call data_proj one or more times with the relevant
           data segments from the trajectory. Finally, call finish_proj.
        """
        N = len(self.evals)
        if output_prefix is not None:
            paths_out = [
                "%s.pc.%07i" % (output_prefix, index)
                for index in xrange(N)
            ]
            dtype = numpy.dtype([("data", float, N)])
            self.proj_mtw = MultiTracksWriter(paths_out, dtype)
        else:
            self.proj_mtw = None
        self.sqnorms_data = numpy.zeros(N, float)
        self.sqnorms_cos = numpy.zeros(N, float)
        self.dot_data_cos = numpy.zeros(N, float)
        self.proj_counter = 0

    def data_proj(self, data):
        """Process data to compute the principal components and the cosine content

           First call init_proj, then call this routine multiple times. Finally
           call finish_proj.
        """
        data = data - self.mean
        if self.correlation:
            data /= numpy.sqrt(numpy.diag(self.cov))
        elif self.weights is not None:
            data *= self.weights
        pcs = numpy.dot(data, self.evecs)
        if self.proj_mtw is not None:
            self.proj_mtw.dump_buffer({"data": pcs})
        t = numpy.arange(self.proj_counter, self.proj_counter+len(data))*(numpy.pi/self.length)
        for i in xrange(data.shape[1]): # iterate ove the columns
            c = numpy.cos((1+i)*t)
            self.sqnorms_data[i] += numpy.dot(pcs[:,i], pcs[:,i])
            self.sqnorms_cos[i] += numpy.dot(c, c)
            self.dot_data_cos[i] += numpy.dot(pcs[:,i], c)
        self.proj_counter += len(data)

    def finish_proj(self):
        """Compute the actual cosine contents.

           Call finish_proj after the last call to data_proj.
        """
        self.ccs = self.dot_data_cos**2/(self.sqnorms_data*self.sqnorms_cos+1e-10)
        if self.proj_mtw is not None:
            self.proj_mtw.finish()
        del self.proj_mtw
        del self.proj_counter
Exemple #13
0
def dlpoly_history_to_tracks(
    filename, destination, sub=slice(None), atom_indexes=None, clear=True,
    pos_unit=angstrom, vel_unit=angstrom/picosecond, frc_unit=amu*angstrom/picosecond**2, time_unit=picosecond,
    mass_unit=amu
):
    hist_reader = DLPolyHistoryReader(filename, sub, pos_unit, vel_unit, frc_unit, time_unit, mass_unit)

    if atom_indexes is None:
        atom_indexes = range(hist_reader.num_atoms)
    else:
        atom_indexes = list(atom_indexes)

    filenames = []
    fields = []

    filenames.append(os.path.join(destination, "step"))
    fields.append( ("step", int, 1) )
    filenames.append(os.path.join(destination, "time"))
    fields.append( ("time", float, 1) )
    for vec in "abc":
        for cor in "xyz":
            filenames.append(os.path.join(destination, "cell.%s.%s" % (vec, cor)))
    fields.append( ("cell", float, (3,3)) )
    for vec in "abc":
        filenames.append(os.path.join(destination, "cell.%s" % (vec)))
    fields.append( ("norms", float, 3) )
    for angle in "alpha", "beta", "gamma":
        filenames.append(os.path.join(destination, "cell.%s" % (angle)))
    fields.append( ("angles", float, 3) )
    for index in atom_indexes:
        for cor in "xyz":
            filenames.append(os.path.join(destination, "atom.pos.%07i.%s" % (index, cor)))
    fields.append( ("pos", float, (len(atom_indexes),3)) )
    if hist_reader.keytrj > 0:
        for index in atom_indexes:
            for cor in "xyz":
                filenames.append(os.path.join(destination, "atom.vel.%07i.%s" % (index, cor)))
        fields.append( ("vel", float, (len(atom_indexes),3)) )
    if hist_reader.keytrj > 1:
        for index in atom_indexes:
            for cor in "xyz":
                filenames.append(os.path.join(destination, "atom.frc.%07i.%s" % (index, cor)))
        fields.append( ("frc", float, (len(atom_indexes),3)) )

    dtype = numpy.dtype(fields)
    mtw = MultiTracksWriter(filenames, dtype, clear=clear)
    for frame in hist_reader:
        cell = frame["cell"]
        norms = numpy.sqrt((cell**2).sum(axis=0))
        frame["norms"] = norms
        alpha = numpy.arccos(numpy.clip(numpy.dot(cell[:,1],cell[:,2])/norms[1]/norms[2], -1,1))
        beta = numpy.arccos(numpy.clip(numpy.dot(cell[:,2],cell[:,0])/norms[2]/norms[0], -1,1))
        gamma = numpy.arccos(numpy.clip(numpy.dot(cell[:,0],cell[:,1])/norms[0]/norms[1], -1,1))
        frame["angles"] = [alpha, beta, gamma]
        frame["pos"] = frame["pos"][atom_indexes]
        if hist_reader.keytrj > 0:
            frame["vel"] = frame["vel"][atom_indexes]
        if hist_reader.keytrj > 0:
            frame["frc"] = frame["frc"][atom_indexes]
        mtw.dump_row(tuple(frame[name] for name, type, shape in fields))
    mtw.finish()