Exemple #1
0
def psf_residuals(expnum,ccdname,stampsize=35,nstar=30,
                  magrange=(13,17),verbose=0):

    # Set the debugging level.
    if verbose==0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl,format='%(message)s',stream=sys.stdout)

    pngprefix = 'qapsf-{}-{}'.format(expnum,ccdname)

    # Gather all the info we need about this CCD.
    decals = Decals()
    ccd = decals.find_ccds(expnum=expnum,ccdname=ccdname)[0]
    band = ccd.filter
    ps1band = dict(g=0,r=1,i=2,z=3,Y=4)
    print('Band {}'.format(band))

    #scales = dict(g=0.0066, r=0.01, z=0.025)
    #vmin, vmax = np.arcsinh(-1), np.arcsinh(100)
    #print(scales[band])

    im = DecamImage(decals,ccd)
    iminfo = im.get_image_info()
    H,W = iminfo['dims']

    wcs = im.get_wcs()

    # Choose a uniformly selected subset of PS1 stars on this CCD.
    ps1 = ps1cat(ccdwcs=wcs)
    cat = ps1.get_stars(band=band,magrange=magrange)

    rand = np.random.RandomState(seed=expnum*ccd.ccdnum)
    these = rand.choice(len(cat)-1,nstar,replace=False)
    #these = rand.random_integers(0,len(cat)-1,nstar)
    cat = cat[these]
    cat = cat[np.argsort(cat.median[:,ps1band[band]])] # sort by magnitude
    #print(cat.nmag_ok)

    # Make a QAplot of the positions of all the stars.
    tim = im.get_tractor_image(const2psf=True)
    img = tim.getImage()
    #img = tim.getImage()/scales[band]

    fig = plt.figure(figsize=(5,10))
    ax = fig.gca()
    ax.get_xaxis().get_major_formatter().set_useOffset(False)
    #ax.imshow(np.arcsinh(img),cmap='gray',interpolation='nearest',
    #          origin='lower',vmin=vmax,vmax=vmax)
    
    ax.imshow(img, **tim.ima)
    ax.axis('off')
    ax.set_title('{}: {}/{} AM={:.2f} Seeing={:.3f}"'.
                 format(band,expnum,ccdname,ccd.airmass,ccd.seeing))

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ax.text(xpos,ypos,'{:2d}'.format(istar+1),color='red',
                horizontalalignment='left')
        circ = plt.Circle((xpos,ypos),radius=30,color='g',fill=False,lw=1)
        ax.add_patch(circ)

    #radec = wcs.radec_bounds()
    #ax.scatter(cat.ra,cat.dec)
    #ax.set_xlim([radec[1],radec[0]])#*[1.0002,0.9998])
    #ax.set_ylim([radec[2],radec[3]])#*[0.985,1.015])
    #ax.set_xlabel('$RA\ (deg)$',fontsize=18)
    #ax.set_ylabel('$Dec\ (deg)$',fontsize=18)
    fig.savefig(pngprefix+'-ccd.png',bbox_inches='tight')

    # Initialize the many-stamp QAplot
    ncols = 3
    nrows = np.ceil(nstar/ncols).astype('int')

    inchperstamp = 2.0
    fig = plt.figure(figsize=(inchperstamp*3*ncols,inchperstamp*nrows))
    irow = 0
    icol = 0
    
    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        mag = ps1star.median[ps1band[band]] # r-band

        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ix,iy = int(xpos), int(ypos)

        # create a little tractor Image object around the star
        slc = (slice(max(iy-stampsize, 0), min(iy+stampsize+1, H)),
               slice(max(ix-stampsize, 0), min(ix+stampsize+1, W)))

        # The PSF model 'const2Psf' is the one used in DR1: a 2-component
        # Gaussian fit to PsfEx instantiated in the image center.
        tim = im.get_tractor_image(slc=slc, const2psf=True)
        stamp = tim.getImage()
        ivarstamp = tim.getInvvar()

        # Initialize a tractor PointSource from PS1 measurements
        flux = NanoMaggies.magToNanomaggies(mag)
        star = PointSource(RaDecPos(ra,dec), NanoMaggies(**{band: flux}))

        # Fit just the source RA,Dec,flux.
        tractor = Tractor([tim], [star])
        tractor.freezeParam('images')

        print('2-component MOG:', tim.psf)
        tractor.printThawedParams()

        for step in range(50):
            dlnp,X,alpha = tractor.optimize()
            if dlnp < 0.1:
                break
        print('Fit:', star)
        model_mog = tractor.getModelImage(0)
        chi2_mog = -2.0*tractor.getLogLikelihood()
        mag_mog = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        # Now change the PSF model to a pixelized PSF model from PsfEx instantiated
        # at this place in the image.
        psf = PixelizedPsfEx(im.psffn)
        tim.psf = psf.constantPsfAt(xpos, ypos)

        #print('PSF model:', tim.psf)
        #tractor.printThawedParams()
        for step in range(50):
            dlnp,X,alpha = tractor.optimize()
            if dlnp < 0.1:
                break

        print('Fit:', star)
        model_psfex = tractor.getModelImage(0)
        chi2_psfex = -2.0*tractor.getLogLikelihood()
        mag_psfex = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        #mn, mx = np.percentile((stamp-model_psfex)[ivarstamp>0],[1,95])
        sig = np.std((stamp-model_psfex)[ivarstamp>0])
        mn, mx = [-2.0*sig,5*sig]

        # Generate a QAplot.
        if (istar>0) and (istar%(ncols)==0):
            irow = irow+1
        icol = 3*istar - 3*ncols*irow
        #print(istar, irow, icol, icol+1, icol+2)

        ax1 = plt.subplot2grid((nrows,3*ncols), (irow,icol), aspect='equal')
        ax1.axis('off')
        #ax1.imshow(stamp, **tim.ima)
        ax1.imshow(stamp,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax1.text(0.1,0.9,'{:2d}'.format(istar+1),color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax1.transAxes)

        ax2 = plt.subplot2grid((nrows,3*ncols), (irow,icol+1), aspect='equal')
        ax2.axis('off')
        #ax2.imshow(stamp-model_mog, **tim.ima)
        ax2.imshow(stamp-model_mog,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax2.text(0.1,0.9,'MoG',color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax2.transAxes)
        ax2.text(0.08,0.08,'{:.3f}'.format(mag_mog),color='white',
                 horizontalalignment='left',verticalalignment='bottom',
                 transform=ax2.transAxes)

        #ax2.set_title('{:.3f}, {:.2f}'.format(mag_psfex,chi2_psfex),fontsize=14)
        #ax2.set_title('{:.3f}, $\chi^{2}$={:.2f}'.format(mag_psfex,chi2_psfex))

        ax3 = plt.subplot2grid((nrows,3*ncols), (irow,icol+2), aspect='equal')
        ax3.axis('off')
        #ax3.imshow(stamp-model_psfex, **tim.ima)
        ax3.imshow(stamp-model_psfex,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax3.text(0.1,0.9,'PSFEx',color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax3.transAxes)
        ax3.text(0.08,0.08,'{:.3f}'.format(mag_psfex),color='white',
                 horizontalalignment='left',verticalalignment='bottom',
                 transform=ax3.transAxes)

        if istar==(nstar-1):
            break
    fig.savefig(pngprefix+'-stargrid.png',bbox_inches='tight')
def psf_residuals(expnum,
                  ccdname,
                  stampsize=35,
                  nstar=30,
                  magrange=(13, 17),
                  verbose=0,
                  splinesky=False):

    # Set the debugging level.
    if verbose == 0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    pngprefix = 'qapsf-{}-{}'.format(expnum, ccdname)

    # Gather all the info we need about this CCD.
    decals = Decals()
    ccd = decals.find_ccds(expnum=expnum, ccdname=ccdname)[0]
    band = ccd.filter
    ps1band = dict(g=0, r=1, i=2, z=3, Y=4)
    print('Band {}'.format(band))

    #scales = dict(g=0.0066, r=0.01, z=0.025)
    #vmin, vmax = np.arcsinh(-1), np.arcsinh(100)
    #print(scales[band])

    im = decals.get_image_object(ccd)
    iminfo = im.get_image_info()
    H, W = iminfo['dims']

    wcs = im.get_wcs()

    # Choose a uniformly selected subset of PS1 stars on this CCD.
    ps1 = ps1cat(ccdwcs=wcs)
    cat = ps1.get_stars(band=band, magrange=magrange)

    rand = np.random.RandomState(seed=expnum * ccd.ccdnum)
    these = rand.choice(len(cat) - 1, nstar, replace=False)
    #these = rand.random_integers(0,len(cat)-1,nstar)
    cat = cat[these]
    cat = cat[np.argsort(cat.median[:, ps1band[band]])]  # sort by magnitude
    #print(cat.nmag_ok)

    get_tim_kwargs = dict(const2psf=True, splinesky=splinesky)

    # Make a QAplot of the positions of all the stars.
    tim = im.get_tractor_image(**get_tim_kwargs)
    img = tim.getImage()
    #img = tim.getImage()/scales[band]

    fig = plt.figure(figsize=(5, 10))
    ax = fig.gca()
    ax.get_xaxis().get_major_formatter().set_useOffset(False)
    #ax.imshow(np.arcsinh(img),cmap='gray',interpolation='nearest',
    #          origin='lower',vmin=vmax,vmax=vmax)

    ax.imshow(img, **tim.ima)
    ax.axis('off')
    ax.set_title('{}: {}/{} AM={:.2f} Seeing={:.3f}"'.format(
        band, expnum, ccdname, ccd.airmass, ccd.seeing))

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ax.text(xpos,
                ypos,
                '{:2d}'.format(istar + 1),
                color='red',
                horizontalalignment='left')
        circ = plt.Circle((xpos, ypos), radius=30, color='g', fill=False, lw=1)
        ax.add_patch(circ)

    #radec = wcs.radec_bounds()
    #ax.scatter(cat.ra,cat.dec)
    #ax.set_xlim([radec[1],radec[0]])#*[1.0002,0.9998])
    #ax.set_ylim([radec[2],radec[3]])#*[0.985,1.015])
    #ax.set_xlabel('$RA\ (deg)$',fontsize=18)
    #ax.set_ylabel('$Dec\ (deg)$',fontsize=18)
    fig.savefig(pngprefix + '-ccd.png', bbox_inches='tight')

    # Initialize the many-stamp QAplot
    ncols = 3
    nrows = np.ceil(nstar / ncols).astype('int')

    inchperstamp = 2.0
    fig = plt.figure(figsize=(inchperstamp * 3 * ncols, inchperstamp * nrows))
    irow = 0
    icol = 0

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        mag = ps1star.median[ps1band[band]]  # r-band

        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ix, iy = int(xpos), int(ypos)

        # create a little tractor Image object around the star
        slc = (slice(max(iy - stampsize, 0), min(iy + stampsize + 1, H)),
               slice(max(ix - stampsize, 0), min(ix + stampsize + 1, W)))

        # The PSF model 'const2Psf' is the one used in DR1: a 2-component
        # Gaussian fit to PsfEx instantiated in the image center.
        tim = im.get_tractor_image(slc=slc, **get_tim_kwargs)
        stamp = tim.getImage()
        ivarstamp = tim.getInvvar()

        # Initialize a tractor PointSource from PS1 measurements
        flux = NanoMaggies.magToNanomaggies(mag)
        star = PointSource(RaDecPos(ra, dec), NanoMaggies(**{band: flux}))

        # Fit just the source RA,Dec,flux.
        tractor = Tractor([tim], [star])
        tractor.freezeParam('images')

        print('2-component MOG:', tim.psf)
        tractor.printThawedParams()

        for step in range(50):
            dlnp, X, alpha = tractor.optimize()
            if dlnp < 0.1:
                break
        print('Fit:', star)
        model_mog = tractor.getModelImage(0)
        chi2_mog = -2.0 * tractor.getLogLikelihood()
        mag_mog = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        # Now change the PSF model to a pixelized PSF model from PsfEx instantiated
        # at this place in the image.
        psf = PixelizedPsfEx(im.psffn)
        tim.psf = psf.constantPsfAt(xpos, ypos)

        #print('PSF model:', tim.psf)
        #tractor.printThawedParams()
        for step in range(50):
            dlnp, X, alpha = tractor.optimize()
            if dlnp < 0.1:
                break

        print('Fit:', star)
        model_psfex = tractor.getModelImage(0)
        chi2_psfex = -2.0 * tractor.getLogLikelihood()
        mag_psfex = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        #mn, mx = np.percentile((stamp-model_psfex)[ivarstamp>0],[1,95])
        sig = np.std((stamp - model_psfex)[ivarstamp > 0])
        mn, mx = [-2.0 * sig, 5 * sig]

        # Generate a QAplot.
        if (istar > 0) and (istar % (ncols) == 0):
            irow = irow + 1
        icol = 3 * istar - 3 * ncols * irow
        #print(istar, irow, icol, icol+1, icol+2)

        ax1 = plt.subplot2grid((nrows, 3 * ncols), (irow, icol),
                               aspect='equal')
        ax1.axis('off')
        #ax1.imshow(stamp, **tim.ima)
        ax1.imshow(stamp,
                   cmap='gray',
                   interpolation='nearest',
                   origin='lower',
                   vmin=mn,
                   vmax=mx)
        ax1.text(0.1,
                 0.9,
                 '{:2d}'.format(istar + 1),
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='top',
                 transform=ax1.transAxes)

        ax2 = plt.subplot2grid((nrows, 3 * ncols), (irow, icol + 1),
                               aspect='equal')
        ax2.axis('off')
        #ax2.imshow(stamp-model_mog, **tim.ima)
        ax2.imshow(stamp - model_mog,
                   cmap='gray',
                   interpolation='nearest',
                   origin='lower',
                   vmin=mn,
                   vmax=mx)
        ax2.text(0.1,
                 0.9,
                 'MoG',
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='top',
                 transform=ax2.transAxes)
        ax2.text(0.08,
                 0.08,
                 '{:.3f}'.format(mag_mog),
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax2.transAxes)

        #ax2.set_title('{:.3f}, {:.2f}'.format(mag_psfex,chi2_psfex),fontsize=14)
        #ax2.set_title('{:.3f}, $\chi^{2}$={:.2f}'.format(mag_psfex,chi2_psfex))

        ax3 = plt.subplot2grid((nrows, 3 * ncols), (irow, icol + 2),
                               aspect='equal')
        ax3.axis('off')
        #ax3.imshow(stamp-model_psfex, **tim.ima)
        ax3.imshow(stamp - model_psfex,
                   cmap='gray',
                   interpolation='nearest',
                   origin='lower',
                   vmin=mn,
                   vmax=mx)
        ax3.text(0.1,
                 0.9,
                 'PSFEx',
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='top',
                 transform=ax3.transAxes)
        ax3.text(0.08,
                 0.08,
                 '{:.3f}'.format(mag_psfex),
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax3.transAxes)

        if istar == (nstar - 1):
            break
    fig.savefig(pngprefix + '-stargrid.png', bbox_inches='tight')
def fit_psf(galaxy,scale,band,verbose=0):

    # Set the debugging level.
    if verbose==0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl,format='%(message)s',stream=sys.stdout)

    stampsize = 50

    pngprefix = 'qapsf-{}-{}-{}'.format(galaxy,scale,band)

    # Read the image and get a postage stamp of the galaxy (which should be
    # centered in the image)
    hizea = HizEA(galaxy,scale,band)
    wcs = hizea.get_wcs()
    W,H = wcs.imagew, wcs.imageh

    xpos,ypos = W/2, H/2
    ra,dec = wcs.pixelxy2radec(xpos, ypos)
    ix,iy = int(xpos), int(ypos)

    slc = (slice(max(iy-stampsize, 0), min(iy+stampsize+1, H)),
           slice(max(ix-stampsize, 0), min(ix+stampsize+1, W)))
    img = hizea.image[slc]
    
    # Instantiate the PSFEx model of the PSF at the center
    psf = PixelizedPsfEx(hizea.psffile).constantPsfAt(xpos,ypos)

    star = PointSource(RaDecPos(ra,dec), NanoMaggies(**{band: 1.0}))

    # Fit just the source RA,Dec,flux.
    tractor = Tractor([img], [star])
    tractor.freezeParam('images')
    
    for step in range(50):
        dlnp,X,alpha = tractor.optimize()
        if dlnp < 0.1:
            break

        print('Fit:', star)
        model_psfex = tractor.getModelImage(0)
        chi2_psfex = -2.0*tractor.getLogLikelihood()
        mag_psfex = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        #mn, mx = np.percentile((stamp-model_psfex)[ivarstamp>0],[1,95])
        sig = np.std((stamp-model_psfex)[ivarstamp>0])
        mn, mx = [-2.0*sig,5*sig]



    sys.exit(0)

    psf = hizea.get_psf()

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        mag = ps1star.median[ps1band[band]] # r-band

        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ix,iy = int(xpos), int(ypos)

        # create a little tractor Image object around the star
        slc = (slice(max(iy-stampsize, 0), min(iy+stampsize+1, H)),
               slice(max(ix-stampsize, 0), min(ix+stampsize+1, W)))

        # The PSF model 'const2Psf' is the one used in DR1: a 2-component
        # Gaussian fit to PsfEx instantiated in the image center.
        tim = im.get_tractor_image(slc=slc, const2psf=True)
        stamp = tim.getImage()
        ivarstamp = tim.getInvvar()

        # Initialize a tractor PointSource from PS1 measurements
        flux = NanoMaggies.magToNanomaggies(mag)
        star = PointSource(RaDecPos(ra,dec), NanoMaggies(**{band: flux}))

        # Fit just the source RA,Dec,flux.
        tractor = Tractor([tim], [star])
        tractor.freezeParam('images')

        print('2-component MOG:', tim.psf)
        tractor.printThawedParams()

        for step in range(50):
            dlnp,X,alpha = tractor.optimize()
            if dlnp < 0.1:
                break
        print('Fit:', star)
        model_mog = tractor.getModelImage(0)
        chi2_mog = -2.0*tractor.getLogLikelihood()
        mag_mog = NanoMaggies.nanomaggiesToMag(star.brightness)[0]


        # Generate a QAplot.
        if (istar>0) and (istar%(ncols)==0):
            irow = irow+1
        icol = 3*istar - 3*ncols*irow
        #print(istar, irow, icol, icol+1, icol+2)

        ax1 = plt.subplot2grid((nrows,3*ncols), (irow,icol), aspect='equal')
        ax1.axis('off')
        #ax1.imshow(stamp, **tim.ima)
        ax1.imshow(stamp,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax1.text(0.1,0.9,'{:2d}'.format(istar+1),color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax1.transAxes)

        ax2 = plt.subplot2grid((nrows,3*ncols), (irow,icol+1), aspect='equal')
        ax2.axis('off')
        #ax2.imshow(stamp-model_mog, **tim.ima)
        ax2.imshow(stamp-model_mog,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax2.text(0.1,0.9,'MoG',color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax2.transAxes)
        ax2.text(0.08,0.08,'{:.3f}'.format(mag_mog),color='white',
                 horizontalalignment='left',verticalalignment='bottom',
                 transform=ax2.transAxes)

        #ax2.set_title('{:.3f}, {:.2f}'.format(mag_psfex,chi2_psfex),fontsize=14)
        #ax2.set_title('{:.3f}, $\chi^{2}$={:.2f}'.format(mag_psfex,chi2_psfex))

        ax3 = plt.subplot2grid((nrows,3*ncols), (irow,icol+2), aspect='equal')
        ax3.axis('off')
        #ax3.imshow(stamp-model_psfex, **tim.ima)
        ax3.imshow(stamp-model_psfex,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax3.text(0.1,0.9,'PSFEx',color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax3.transAxes)
        ax3.text(0.08,0.08,'{:.3f}'.format(mag_psfex),color='white',
                 horizontalalignment='left',verticalalignment='bottom',
                 transform=ax3.transAxes)

        if istar==(nstar-1):
            break
    fig.savefig(pngprefix+'-stargrid.png',bbox_inches='tight')