def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        price_data = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(price_data[0:10]))
        print("price_data idx last 10" + str(price_data[-1]))

        input_len = 400
        n_actions = 3
        obs_size = input_len + n_actions  # shape#env.observation_space.shape[0]

        training_set = copy.copy(price_data)
        X_train = []
        y_train = []
        for i in range(input_len, len(training_set) - 1001):
            # X_train.append(np.flipud(training_set_scaled[i-60:i]))
            X_train.append(training_set[i - input_len:i])
            y_train.append(training_set[i])

        price = y_train
        money = 300
        before_money = money
        ethereum = 0.01
        total_money = money + np.float64(price[0] * ethereum)
        first_total_money = total_money
        pass_count = 0
        buy_sell_count = 0  # buy+ sell -
        pass_renzoku_count = 0
Exemple #2
0
def create_data():
    trade = TradeClass()
    # time_date, price_data = trade.getDataPoloniex()
    num_history_data = trade.read_bitflyer_json()

    X = []
    for idx in range(0, len(num_history_data) - INPUT_LEN - SEQUENTIAL_NUM):
        tmp = [
            num_history_data[idx + list_idx]
            for list_idx in range(0, INPUT_LEN)
        ]
        X.append(tmp)

    #次の入力データXの最新のデータを、Xの教師Yとする。
    Y = []
    tmp = []
    for i in range(INPUT_LEN, len(num_history_data) - SEQUENTIAL_NUM):
        for j in range(0, SEQUENTIAL_NUM):
            tmp.append(float(num_history_data[i + j]))
        Y.append(tmp)
        tmp = []
    print(Y[0])
    print("len(Y)" + str(len(Y)))
    print("len(X))" + str(len(X)))
    #XとYの配列の長さが等しくなるように、Xの要素を一つ削除する 。

    return X, Y
    def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        training_set = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(training_set[0:10]))
        print("price_data idx last 10" + str(training_set[-1]))

        self.input_len = 400
        self.n_actions = 3
        self.obs_size = self.input_len + self.n_actions  #env.observation_space.shape[0]

        self.X_train = []
        self.y_train = []
        for i in range(self.input_len, len(training_set) - 1001):
            # X_train.append(np.flipud(training_set_scaled[i-60:i]))
            self.X_train.append(training_set[i - self.input_len:i])
            self.y_train.append(training_set[i])

        self.price = self.y_train
        self.money = 300
        self.before_money = copy.deepcopy(self.money)
        self.cripto = 0.1
        self.total_money = self.money + np.float64(self.price[0] * self.cripto)
        self.first_total_money = self.total_money
        self.pass_count = 0
        self.buy_sell_count = 0  # buy+ sell -
        self.pass_renzoku_count = 0
        self.buy_sell_fee = 0.00001
    def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        training_set = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(training_set[0:10]))
        print("price_data idx last 10" + str(training_set[-1]))
        self.length_data = len(training_set)

        self.input_len = 400
        self.n_actions = 3
        self.asset_info_len = 2
        self.buy_sell_count_len = 4
        #TODO
        self.observe_size = self.input_len + self.buy_sell_count_len  #+self.asset_info_len  #env.observation_space.shape[0]

        self.data = []
        self.y_train = []
        for i in range(self.input_len, self.length_data - 1001):
            # data.append(np.flipud(training_set_scaled[i-60:i]))
            self.data.append(training_set[i - self.input_len:i])
            self.y_train.append(training_set[i])

        self.price = self.y_train
        self.money = 500
        self.before_money = copy.deepcopy(self.money)
        self.cripto = 0.00001
        self.total_money = self.money + np.float64(self.price[0] * self.cripto)
        self.first_total_money = self.total_money
        self.pass_count = 0
        self.buy_sell_count = 0  # buy+ sell -
        self.pass_renzoku_count = 0
        self.buy_sell_fee = 0.00001
        self.current_asset = [self.cripto, self.money]
        self.action_space = gym.spaces.Discrete(3)  # 東西南北
        self.MAP = np.array([0 for idx in range(0, self.observe_size)])
        self.inventory = []
        self.observation_space = gym.spaces.Box(low=0,
                                                high=3,
                                                shape=self.MAP.shape)
        self.begin_total_money = self.money + self.cripto * self.price[0]
        print("LENGTH OF LOOP NUM:" + str(len(self.data)))
        self.buy_inventory = []
        self.sell_inventory = []
        self.total_profit = 0
import numpy as np
import random
import sys, os, copy, traceback

from trade_class import TradeClass
#from trade_class import buy_simple, sell_simple, pass_simple
#from trade_class import SellAndCalcAmoutUsingPrediction,BuyAndCalcAmoutUsingPrediction

cp = cuda.cupy
from sklearn import preprocessing

ss = preprocessing.StandardScaler()

print(os.path.basename(__file__))

tradecl = TradeClass()
price_data = tradecl.ReadPoloniexCSV()
np.set_printoptions(threshold=np.inf)
print("price_data idx 0-10" + str(price_data[0:10]))
print("price_data idx last 10" + str(price_data[-1]))

input_price_len = 400
input_discrete_value_size = 3
total_input_size = input_price_len + input_discrete_value_size
n_actions = 3

# obs_size = input_len+n_actions#shape#env.observation_space.shape[0]


def standarization(x, axis=None):
    x = np.array(x)
#coding: utf-8
#https://qiita.com/aaatsushi_bb/items/0b605c0f27493f005c88
import numpy
from trade_class import TradeClass
import xgboost as xgb
import copy
import numpy as np
from sklearn.grid_search import GridSearchCV
import matplotlib as plt
import matplotlib.pyplot as plt

trade = TradeClass()
time_date, price_data = trade.getDataPoloniex()

max_price = max(price_data)
training_set = copy.copy(price_data)

X_train = []
y_train = []
for i in range(60, len(training_set) - 10001):
    #X_train.append(np.flipud(training_set_scaled[i-60:i]))
    X_train.append(training_set[i - 60:i])
    y_train.append(training_set[i])

X_train, y_train = trade.PercentageLabel(X_train, y_train)

X_train, y_train = np.array(X_train,
                            dtype='float64'), np.array(y_train,
                                                       dtype='float64')

from scipy.sparse import coo_matrix
class FxEnv(gym.Env):
    def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        training_set = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(training_set[0:10]))
        print("price_data idx last 10" + str(training_set[-1]))

        self.input_len = 400
        self.n_actions = 3
        self.obs_size = self.input_len + self.n_actions  #env.observation_space.shape[0]

        self.X_train = []
        self.y_train = []
        for i in range(self.input_len, len(training_set) - 1001):
            # X_train.append(np.flipud(training_set_scaled[i-60:i]))
            self.X_train.append(training_set[i - self.input_len:i])
            self.y_train.append(training_set[i])

        self.price = self.y_train
        self.money = 300
        self.before_money = copy.deepcopy(self.money)
        self.cripto = 0.1
        self.total_money = self.money + np.float64(self.price[0] * self.cripto)
        self.first_total_money = self.total_money
        self.pass_count = 0
        self.buy_sell_count = 0  # buy+ sell -
        self.pass_renzoku_count = 0
        self.buy_sell_fee = 0.00001

    def _reset(self):
        self.price_idx = 0
        return self.X_train[self.price_idx]

    def _seed(self, seed=None):
        pass

    def buy_simple(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = money * 0.1
        money -= spend * (1 + self.buy_sell_fee)
        if money <= 0.0:
            return first_money, first_cripto, first_total_money

        cripto += float(spend / current_price)
        total_money = money + cripto * current_price

        return money, cripto, total_money

    def sell_simple(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = cripto * 0.1
        cripto -= spend * (1 + self.buy_sell_fee)
        if cripto <= 0.0:
            return first_money, first_cripto, first_total_money

        money += float(spend * current_price)
        total_money = money + float(cripto * current_price)

        return money, cripto, total_money

    def pass_simple(self, money, cripto, total_money, current_price):
        total_money = money + float(cripto * current_price)
        return money, cripto, total_money

    def _step(self, action):
        self.price_idx += 1

        current_price = self.X_train[self.price_idx][-1]
        buy_sell_num_array = [
            1.0, 0.0, self.buy_sell_count
        ] if self.buy_sell_count >= 1 else [0.0, 1.0, self.buy_sell_count]

        self.trade.update_trading_view(current_price, action)

        pass_reward = 0
        if action == 0:
            print("buy")
            self.buy_sell_count += 1
            self.money, self.cripto, self.total_money = self.buy_simple(
                self.money, self.cripto, self.total_money, current_price)
        elif action == 1:
            print("sell")
            self.buy_sell_count -= 1
            self.money, self.cripto, self.total_money = self.sell_simple(
                self.money, self.cripto, self.total_money, current_price)
        else:
            print("PASS")
            self.money, self.cripto, self.total_money = self.pass_simple(
                self.money, self.cripto, self.total_money, current_price)
            pass_reward = 0.0  # -0.001)#0.01 is default
            self.pass_count += 1

        reward = self.total_money - self.before_money + pass_reward
        if self.buy_sell_count >= 5 and action == 0:
            print("buy_sell" + str(self.buy_sell_count) + "回 action==" +
                  str(action))
            reward -= (float(abs(self.buy_sell_count)**2))
            print(reward)
        elif self.buy_sell_count <= -5 and action == 1:
            print("buy_sell" + str(self.buy_sell_count) + "回 action==" +
                  str(action))
            reward -= (float(abs(self.buy_sell_count)**2))
            print(reward)
        else:
            # reward 1.0がちょうど良い!
            reward += 1.1

        self.before_money = copy.deepcopy(self.total_money)

        if self.price_idx % 2000 == 1000:
            print("last action:" + str(action))
            print("TOTAL MONEY" + str(self.total_money))
            print("100回中passは" + str(self.pass_count) + "回")
            # print("100回中buy_sell_countは" + str(self.buy_sell_count) + "回")
            self.pass_count = 0
            self.trade.draw_trading_view()

        current_asset = [self.cripto, self.money]

        # obs, reward, done, infoを返す
        return [
            self.X_train[self.price_idx], buy_sell_num_array, current_asset
        ], reward, False, None
Exemple #8
0
#coding: utf-8

import numpy as np
import matplotlib.pyplot as plt

import time
import datetime
import copy

from trade_class import TradeClass
trade = TradeClass()
time_date, price_data = trade.getDataPoloniex()

max_price = max(price_data)
training_set = copy.copy(price_data)

X_train = []
y_train = []
for i in range(60, len(training_set) - 10001):
    #X_train.append(np.flipud(training_set_scaled[i-60:i]))
    X_train.append(training_set[i - 60:i])
    y_train.append(training_set[i])

X_train, y_train = trade.PercentageLabel(X_train, y_train)

X_train, y_train = np.array(X_train,
                            dtype='float64'), np.array(y_train,
                                                       dtype='float64')

from scipy.sparse import coo_matrix
X_sparse = coo_matrix(X_train)
            if bid_ask == "bid":
                print("cleaning order Bid  Try"+str(counter)+"回目")
                bids_top_price = public_zaif.depth('btc_jpy')['bids'][0][0]
                limit_price = bids_top_price + counter*5
            else:
                print("cleaning order Ask  Try"+str(counter)+"回目")
                asks_top_price = public_zaif.depth('btc_jpy')['asks'][0][0]
                limit_price = asks_top_price - counter*5
            leverage_zaif.change_position(type="futures", leverage_id=id, group_id=1, price=int(price), limit=int(limit_price))
            print("Done. cleaning order")
            time.sleep(10)
        except:
            traceback.print_exc()
            print(sys.exc_info()[0])

trade=TradeClass()
history=get_price()
print("History data is here. execute get_price() function")
print(history)

#買いは+、売りは−
leverage_pos_num = -33

for num in range(99999999999):
    #time.sleep(60*5)#本当は5分×60セット待たなければならない
    try:
        time.sleep(20)
        public_zaif = ZaifPublicApi()
        a = public_zaif.last_price(('btc_jpy'))
        print(str(a))
        last_price = int(a['last_price'])
class FxEnv(gym.Env):
    def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        training_set = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(training_set[0:10]))
        print("price_data idx last 10" + str(training_set[-1]))
        self.length_data = len(training_set)

        self.input_len = 400
        self.n_actions = 3
        self.asset_info_len = 2
        self.buy_sell_count_len = 4
        #TODO
        self.observe_size = self.input_len + self.buy_sell_count_len  #+self.asset_info_len  #env.observation_space.shape[0]

        self.data = []
        self.y_train = []
        for i in range(self.input_len, self.length_data - 1001):
            # data.append(np.flipud(training_set_scaled[i-60:i]))
            self.data.append(training_set[i - self.input_len:i])
            self.y_train.append(training_set[i])

        self.price = self.y_train
        self.money = 500
        self.before_money = copy.deepcopy(self.money)
        self.cripto = 0.00001
        self.total_money = self.money + np.float64(self.price[0] * self.cripto)
        self.first_total_money = self.total_money
        self.pass_count = 0
        self.buy_sell_count = 0  # buy+ sell -
        self.pass_renzoku_count = 0
        self.buy_sell_fee = 0.00001
        self.current_asset = [self.cripto, self.money]
        self.action_space = gym.spaces.Discrete(3)  # 東西南北
        self.MAP = np.array([0 for idx in range(0, self.observe_size)])
        self.inventory = []
        self.observation_space = gym.spaces.Box(low=0,
                                                high=3,
                                                shape=self.MAP.shape)
        self.begin_total_money = self.money + self.cripto * self.price[0]
        print("LENGTH OF LOOP NUM:" + str(len(self.data)))
        self.buy_inventory = []
        self.sell_inventory = []
        self.total_profit = 0

    def _reset(self):
        self.price_idx = 0
        return self.data[self.price_idx] + [0, 0, 0, 0
                                            ]  #TODO: +self.current_asset

    def _seed(self, seed=None):
        return self.length_data

    def return_lenghth_steps(self):
        return self.length_data

    def _render(self, mode='', close=False):
        #画面への表示 主にGUI
        pass

    def buy_simple(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = money * 0.1
        money -= spend * (1 + self.buy_sell_fee)
        if money <= 0.0:
            return first_money, first_cripto, first_total_money

        cripto += float(spend / current_price)
        total_money = money + cripto * current_price

        return money, cripto, total_money

    def sell_simple(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = cripto * 0.1
        cripto -= spend * (1 + self.buy_sell_fee)
        if cripto <= 0.0:
            return first_money, first_cripto, first_total_money

        money += float(spend * current_price)
        total_money = money + float(cripto * current_price)

        return money, cripto, total_money

    def pass_simple(self, money, cripto, total_money, current_price):
        total_money = money + float(cripto * current_price)
        return money, cripto, total_money

    def buy_lot(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = current_price * 0.001
        money -= spend * (1 + self.buy_sell_fee)
        EMPTY_MONEY_FLAG = False
        if money <= 0.0:
            EMPTY_MONEY_FLAG = True
            return first_money, first_cripto, first_total_money, EMPTY_MONEY_FLAG

        cripto += float(spend / current_price)
        total_money = money + cripto * current_price

        return money, cripto, total_money, EMPTY_MONEY_FLAG

    def sell_lot(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = cripto * 0.001
        cripto -= spend * (1 + self.buy_sell_fee)
        EMPTY_MONEY_FLAG = False
        if cripto <= 0.0:
            EMPTY_MONEY_FLAG = True
            return first_money, first_cripto, first_total_money, EMPTY_MONEY_FLAG

        money += float(spend * current_price)
        total_money = money + float(cripto * current_price)

        return money, cripto, total_money, EMPTY_MONEY_FLAG

    def _step(self, action):

        if type(action) is list or type(action) is np.ndarray:
            action = action.tolist()
            action = action.index(max(action))
        else:
            pass
        self.price_idx += 1

        current_price = self.data[self.price_idx][-1]

        self.trade.update_trading_view(current_price, action)

        len_buy = len(self.buy_inventory)
        len_sell = len(self.sell_inventory)
        if len_buy > 40:
            buy_flag = 1
            sell_flag = 0
        elif len_sell > 40:
            buy_flag = 0
            sell_flag = 1
        else:
            buy_flag = 0
            sell_flag = 0

        buy_sell_array = [len_buy, len_sell, buy_flag, sell_flag]

        #TODO idx + 1じゃなくて良いか? バグの可能性あり。=>修正済み
        #next_state = getStateFromCsvData(self.data, self.price_idx+1, window_size)
        reward = 0
        if action == 1 and len(self.sell_inventory) > 0:  # sell
            i = 0
            for i in range(0, int(len(self.sell_inventory) / 10)):
                sold_price = self.sell_inventory.pop(0)
                profit = sold_price - current_price
                reward = profit  #max(profit, 0)
                self.total_profit += profit
                #print("Buy(空売りの決済): " + str(current_price) + " | Profit: " + str(profit))
            reward = reward / (i + 1)
        elif action == 1 and len(self.buy_inventory) < 50:  # buy
            self.buy_inventory.append(current_price)
            #print("Buy: " + str(current_price))
        elif action == 2 and len(self.buy_inventory) > 0:  # sell
            i = 0
            for i in range(0, int(len(self.buy_inventory) / 10)):
                bought_price = self.buy_inventory.pop(0)
                profit = current_price - bought_price
                reward = profit  # max(profit, 0)
                self.total_profit += profit
                #print("Sell: " + str(current_price) + " | Profit: " + formatPrice(profit))
            reward = reward / (i + 1)
        elif action == 2 and len(self.sell_inventory) < 50:
            self.sell_inventory.append(current_price)
            #print("Sell(空売り): " + formatPrice(current_price))

        #print("Reward: "+str(reward))
        print("inventory(sell) : " + str(len(self.sell_inventory)) +
              "       inventory(buy)  : " + str(len(self.buy_inventory)))
        print("TOTAL PROFIT:  " + str(self.total_profit))
        if False:  #self.price_idx % 10000 == 1000:
            try:
                print("TOTAL PROFIT:  " + str(self.total_profit))
                print("inventory(sell) : " + str(len(self.sell_inventory)) +
                      "       inventory(buy)  : " +
                      str(len(self.buy_inventory)))
                self.trade.draw_trading_view()
            except:
                pass
        done = True if self.price_idx == self.length_data - 1 else False

        # obs, reward, done, infoを返す
        return self.data[self.price_idx] + buy_sell_array, reward, done, {}
#from chainerrl.action_value import DiscreteActionValue
#from chainerrl.action_value import QuadraticActionValue
#from chainerrl.optimizers import rmsprop_async

from chainerrl import links
from chainerrl import policies

import numpy as np
import random
import time

import poloniex
import datetime
import copy
from trade_class import TradeClass
trade = TradeClass()
price_data = trade.read_bitflyer_json()
print("price_data idx 0-10" + str(price_data[0:10]))
print("price_data idx last 10" + str(price_data[-1]))
'''
def getDataPoloniex():
    polo = poloniex.Poloniex()
    polo.timeout = 10
    chartUSDT_BTC = polo.returnChartData('USDT_BTC', period=300, start=time.time() - 1440 * 60 * 500, end=time.time())  # 1440(min)*60(sec)=DAY
    tmpDate = [chartUSDT_BTC[i]['date'] for i in range(len(chartUSDT_BTC))]
    date = [datetime.datetime.fromtimestamp(tmpDate[i]) for i in range(len(tmpDate))]
    data = [float(chartUSDT_BTC[i]['open']) for i in range(len(chartUSDT_BTC))]
    return date, data
'''

#time_date, price_data = getDataPoloniex()
Exemple #12
0
class FxEnv(gym.Env):
    def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        training_set = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(training_set[0:10]))
        print("price_data idx last 10" + str(training_set[-1]))

        self.input_len = 400
        self.n_actions = 3
        self.asset_info_len = 2
        self.buy_sell_count_len = 4
        self.observe_size = self.input_len + self.buy_sell_count_len + self.asset_info_len  # env.observation_space.shape[0]

        self.X_train = []
        self.y_train = []
        for i in range(self.input_len, len(training_set) - 1001):
            # X_train.append(np.flipud(training_set_scaled[i-60:i]))
            self.X_train.append(training_set[i - self.input_len:i])
            self.y_train.append(training_set[i])

        self.price = self.y_train
        self.money = 500
        self.before_money = copy.deepcopy(self.money)
        self.cripto = 0.00001
        self.total_money = self.money + np.float64(self.price[0] * self.cripto)
        self.first_total_money = self.total_money
        self.pass_count = 0
        self.buy_sell_count = 0  # buy+ sell -
        self.pass_renzoku_count = 0
        self.buy_sell_fee = 0.00001
        self.current_asset = [self.cripto, self.money]
        self.action_space = gym.spaces.Discrete(3)  # 東西南北
        self.MAP = np.array([0 for idx in range(0, self.observe_size)])
        self.inventory = []
        self.observation_space = gym.spaces.Box(
            low=0,
            high=3,
            shape=self.MAP.shape
        )
        self.begin_total_money = self.y_train[0]
        print("LENGTH OF LOOP NUM:" + str(len(self.X_train)))

    def _reset(self):
        self.price_idx = 0
        return self.X_train[self.price_idx] + [0, 0, 0, 0] + self.current_asset

    def _seed(self, seed=None):
        pass

    def _render(self, mode='', close=False):
        # 画面への表示 主にGUI
        pass

    def buy_simple(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = money * 0.1
        money -= spend * (1 + self.buy_sell_fee)
        if money <= 0.0:
            return first_money, first_cripto, first_total_money

        cripto += float(spend / current_price)
        total_money = money + cripto * current_price

        return money, cripto, total_money

    def sell_simple(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = cripto * 0.1
        cripto -= spend * (1 + self.buy_sell_fee)
        if cripto <= 0.0:
            return first_money, first_cripto, first_total_money

        money += float(spend * current_price)
        total_money = money + float(cripto * current_price)

        return money, cripto, total_money

    def pass_simple(self, money, cripto, total_money, current_price):
        total_money = money + float(cripto * current_price)
        return money, cripto, total_money

    def buy_lot(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = current_price * 0.001
        money -= spend * (1 + self.buy_sell_fee)
        EMPTY_MONEY_FLAG = False
        if money <= 0.0:
            EMPTY_MONEY_FLAG = True
            return first_money, first_cripto, first_total_money, EMPTY_MONEY_FLAG

        cripto += float(spend / current_price)
        total_money = money + cripto * current_price

        return money, cripto, total_money, EMPTY_MONEY_FLAG

    def sell_lot(self, money, cripto, total_money, current_price):
        first_money, first_cripto, first_total_money = money, cripto, total_money
        spend = cripto * 0.001
        cripto -= spend * (1 + self.buy_sell_fee)
        EMPTY_MONEY_FLAG = False
        if cripto <= 0.0:
            EMPTY_MONEY_FLAG = True
            return first_money, first_cripto, first_total_money, EMPTY_MONEY_FLAG

        money += float(spend * current_price)
        total_money = money + float(cripto * current_price)

        return money, cripto, total_money, EMPTY_MONEY_FLAG

    def _step(self, action):

        if type(action) is list or type(action) is np.ndarray:
            action = action.tolist()
            action = action.index(max(action))
        else:
            pass
        self.price_idx += 1

        current_price = self.X_train[self.price_idx][-1]

        if abs(self.buy_sell_count) >= 10:
            between_range = 0.0
        else:
            between_range = 1.0

        buy_sell_num_array = [1.0, 0.0, abs(self.buy_sell_count), between_range] if self.buy_sell_count >= 0 else [0.0,
                                                                                                                   1.0,
                                                                                                                   abs(
                                                                                                                       self.buy_sell_count),
                                                                                                                   between_range]

        self.trade.update_trading_view(current_price, action)

        reward = 0

        if action == 0:
            print("buy")
            self.buy_sell_count += 1
            self.money, self.cripto, self.total_money = self.buy_simple(self.money, self.cripto, self.total_money,
                                                                        current_price)
            if self.buy_sell_count < 0:
                reward += 0.01
            else:
                reward -= 0.01
        elif action == 1 and len(self.inventory) > 0:
            print("sell")
            self.buy_sell_count -= 1
            self.money, self.cripto, self.total_money = self.sell_simple(self.money, self.cripto, self.total_money,
                                                                         current_price)
            if self.buy_sell_count > 0:
                reward += 0.01
            else:
                reward -= 0.01
        else:
            print("PASS")
            self.money, self.cripto, self.total_money = self.pass_simple(self.money, self.cripto, self.total_money,
                                                                         current_price)
            reward += 0.000000  # -0.001)#0.01 is default
            self.pass_count += 1

        reward += 0.01 * (self.total_money - self.before_money)
        print("buy_sell" + str(self.buy_sell_count) + "回 action==" + str(action))

        self.before_money = self.total_money

        if False:  # self.price_idx % 50000 == 1000:
            print("last action:" + str(action))
            print("TOTAL MONEY" + str(self.total_money))
            print("100回中passは" + str(self.pass_count) + "回")
            # print("100回中buy_sell_countは" + str(self.buy_sell_count) + "回")
            self.pass_count = 0
            try:
                self.trade.draw_trading_view()
            except:
                pass

        print("begin  MONEY: " + str(self.begin_total_money))
        print("current MONEY: " + str(self.total_money))
        print("price_IDX: " + str(self.price_idx))
        print("Reward: " + str(reward))
        self.current_asset = [self.cripto, self.money]

        # obs, reward, done, infoを返す
        return self.X_train[self.price_idx] + buy_sell_num_array + self.current_asset, reward, False, {}
Exemple #13
0
from keras.layers.core import Dense, Activation
from keras.layers.recurrent import LSTM
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping

import numpy as np
import random
import sys, os, copy, traceback
from sklearn.utils import shuffle
from trade_class import TradeClass
from sklearn import preprocessing
ss = preprocessing.StandardScaler()

print(os.path.basename(__file__))

tradecl = TradeClass()
price_data = tradecl.ReadPoloniexCSV()
np.set_printoptions(threshold=np.inf)
print("price_data idx 0-10" + str(price_data[0:10]))
print("price_data idx last 10" + str(price_data[-1]))

input_price_len = 400
input_discrete_value_size = 3
total_input_size = input_price_len + input_discrete_value_size
n_actions = 3


#obs_size = input_len+n_actions#shape#env.observation_space.shape[0]
#データを標準化して、ディープラーニングで学習しやすくする。
def standarization(x, axis=None):
    x = np.array(x)
class FxEnv(gym.Env):
    def __init__(self):
        self.price_idx = 0
        self.trade = TradeClass()
        price_data = self.trade.read_bitflyer_json()
        print("price_data idx 0-10" + str(price_data[0:10]))
        print("price_data idx last 10" + str(price_data[-1]))

        input_len = 400
        n_actions = 3
        obs_size = input_len + n_actions  # shape#env.observation_space.shape[0]

        training_set = copy.copy(price_data)
        X_train = []
        y_train = []
        for i in range(input_len, len(training_set) - 1001):
            # X_train.append(np.flipud(training_set_scaled[i-60:i]))
            X_train.append(training_set[i - input_len:i])
            y_train.append(training_set[i])

        price = y_train
        money = 300
        before_money = money
        ethereum = 0.01
        total_money = money + np.float64(price[0] * ethereum)
        first_total_money = total_money
        pass_count = 0
        buy_sell_count = 0  # buy+ sell -
        pass_renzoku_count = 0

    def _reset(self):
        self.price_idx = 0
        return X_train[0]

    def _step(self, action):

        self.price_idx += 1
        reward = 0

        current_price = X_train[self.price_idx][-1]
        buy_sell_num_flag = [
            1.0, 0.0, buy_sell_count
        ] if buy_sell_count >= 1 else [0.0, 1.0, buy_sell_count]

        self.trade.update_trading_view(current_price, action)

        pass_reward = 0
        if action == 0:
            print("buy")
            buy_sell_count += 1
            money, ethereum, total_money = buy_simple(money, ethereum,
                                                      total_money,
                                                      current_price)
        elif action == 1:
            print("sell")
            buy_sell_count -= 1
            money, ethereum, total_money = sell_simple(money, ethereum,
                                                       total_money,
                                                       current_price)
        else:
            print("PASS")
            money, ethereum, total_money = pass_simple(money, ethereum,
                                                       total_money,
                                                       current_price)
            pass_reward = 0.0  # -0.001)#0.01 is default
            self.pass_count += 1

        reward = total_money - before_money + pass_reward
        if buy_sell_count >= 5 and action == 0:
            print("buy_sell" + str(buy_sell_count) + "回 action==" +
                  str(action))
            reward -= (float(abs(buy_sell_count)**2))
            print(reward)
        elif buy_sell_count <= -5 and action == 1:
            print("buy_sell" + str(buy_sell_count) + "回 action==" +
                  str(action))
            reward -= (float(abs(buy_sell_count)**2))
            print(reward)
        else:
            # reward 1.0がちょうど良い!
            reward += 1.1

        before_money = total_money

        if idx % 2000 == 1000:
            print("last action:" + str(action))
            print("TOTAL MONEY" + str(total_money))
            print("100回中passは" + str(pass_count) + "回")
            # print("100回中buy_sell_countは" + str(buy_sell_count) + "回")
            self.pass_count = 0
            trade.draw_trading_view()
            agent.save('chainerRLAgent')

        # obs, reward, done, infoを返す
        return X_train[price_idx], reward, False, None