Exemple #1
0
 def run_all_assets(self):
     for idx, asset in enumerate(self.sim_assets):
         output = self.load_curr_results(idx)
         if len(output.keys()) == len(self.scenarios):
             continue
         self.set_config(idx)
         self.load_data(idx)
         for ix, s in enumerate(self.scenarios):
             if str(ix) in output:
                 continue
             res = {'asset': '_'.join(asset), 'scen_id': ix,\
                    'sim_name': self.sim_name, 'sim_class': self.sim_class.__name__, 'sim_func': self.sim_func,
                    'end_date': str(self.config['end_date'])}
             for i in range(5):
                 res['par_name' + str(i)] = ''
                 res['par_value' + str(i)] = 0
             for i, (key, seq) in enumerate(zip(self.scen_keys, s)):
                 self.config[key] = self.scen_param[key][seq]
                 res['par_name' + str(i)] = key
                 res['par_value' + str(i)] = str(self.scen_param[key][seq])
             self.prepare_data(idx, cont_idx=0)
             sim_strat = self.sim_class(self.config)
             sim_dfs, closed_trades = getattr(sim_strat, self.sim_func)()
             (res_pnl, ts) = get_pnl_stats(sim_dfs,
                                           self.config['marginrate'],
                                           self.sim_freq,
                                           self.pnl_tenors,
                                           cost_ratio=self.cost_ratio)
             res_trade = get_trade_stats(closed_trades)
             res.update(dict(res_pnl.items() + res_trade.items()))
             file_prefix = self.file_prefix + '_' + '_'.join(
                 [self.sim_mode] + asset)
             res['trade_file'] = file_prefix + '_' + str(ix) + '_trades.csv'
             res['pnl_file'] = file_prefix + '_' + str(
                 ix) + '_dailydata.csv'
             output[str(ix)] = res
             all_trades = {}
             for i, tradepos in enumerate(closed_trades):
                 all_trades[i] = trade_position.tradepos2dict(tradepos)
             trades = pd.DataFrame.from_dict(all_trades).T
             trades.to_csv(res['trade_file'])
             ts.to_csv(res['pnl_file'])
             fname = file_prefix + '_stats.json'
             with open(fname, 'w') as ofile:
                 json.dump(output, ofile)
             cnx = dbaccess.connect(**self.dbconfig)
             #cnx.set_converter_class(mysql_helper.NumpyMySQLConverter)
             dbaccess.insert_row_by_dict(cnx,
                                         self.dbtable,
                                         res,
                                         is_replace=True)
             cnx.close()
             print 'The results for asset = %s, scen = %s are saved' % (
                 asset, str(ix))
Exemple #2
0
 def run_all_assets(self):
     self.restart()
     for idx, asset in enumerate(self.sim_assets):
         output = self.load_curr_results(idx)
         if len(output.keys()) == len(self.scenarios):
             continue
         self.set_config(idx)
         self.load_data(idx)
         for ix, s in enumerate(self.scenarios):
             if str(ix) in output:
                 continue
             file_prefix = self.file_prefix + '_' + '_'.join([self.sim_mode] + asset)
             fname1 = file_prefix + '_'+ str(ix) + '_trades.csv'
             fname2 = file_prefix + '_'+ str(ix) + '_dailydata.csv'
             for key, seq in zip(self.scen_keys, s):
                 self.config[key] = self.scen_param[key][seq]
             self.prepare_data(idx, cont_idx = 0)
             sim_strat = self.sim_class(self.config)
             sim_df, closed_trades = getattr(sim_strat, self.sim_func)()
             (res_pnl, ts) = get_pnl_stats( [sim_df], self.config['marginrate'], 'm')
             res_trade = get_trade_stats(closed_trades)
             res = dict( res_pnl.items() + res_trade.items())
             res.update(dict(zip(self.scen_keys, s)))
             res['asset'] = '_'.join(asset)
             output[ix] = res
             print 'saving results for asset = %s, scen = %s' % (asset, str(ix))
             all_trades = {}
             for i, tradepos in enumerate(closed_trades):
                 all_trades[i] = trade_position.tradepos2dict(tradepos)
             trades = pd.DataFrame.from_dict(all_trades).T
             trades.to_csv(fname1)
             ts.to_csv(fname2)
             fname = file_prefix + '_stats.json'
             with open(fname, 'w') as ofile:
                 json.dump(output, ofile)
         res = pd.DataFrame.from_dict(output, orient = 'index')
         res.index.name = 'scenario'
         res = res.sort_values(by = ['sharp_ratio'], ascending=False)
         res = res.reset_index()
         res.set_index(['asset', 'scenario'])
         out_res = res[self.output_columns()]
         if len(self.summary_df)==0:
             self.summary_df = out_res[:30].copy(deep = True)
         else:
             self.summary_df = self.summary_df.append(out_res[:30])
         fname = self.file_prefix + 'summary.csv'
         self.summary_df.to_csv(fname)
Exemple #3
0
 def run_all_assets(self):
     for idx, asset in enumerate(self.sim_assets):
         output = self.load_curr_results(idx)
         if len(output.keys()) == len(self.scenarios):
             continue
         self.set_config(idx)
         self.load_data(idx)
         for ix, s in enumerate(self.scenarios):
             if str(ix) in output:
                 continue
             res = {'asset': '_'.join(asset), 'scen_id': ix,\
                    'sim_name': self.sim_name, 'sim_class': self.sim_class.__name__, 'sim_func': self.sim_func,
                    'end_date': str(self.config['end_date'])}
             for i in range(5):
                 res['par_name' + str(i)] = ''
                 res['par_value' + str(i)] = 0
             for i, (key, seq) in enumerate(zip(self.scen_keys, s)):
                 self.config[key] = self.scen_param[key][seq]
                 res['par_name' + str(i)] = key
                 res['par_value' + str(i)] = str(self.scen_param[key][seq])
             self.prepare_data(idx, cont_idx = 0)
             sim_strat = self.sim_class(self.config)
             sim_dfs, closed_trades = getattr(sim_strat, self.sim_func)()
             (res_pnl, ts) = get_pnl_stats( sim_dfs, self.config['marginrate'], self.sim_freq, self.pnl_tenors, cost_ratio = self.cost_ratio)
             res_trade = get_trade_stats(closed_trades)
             res.update(dict( res_pnl.items() + res_trade.items()))
             file_prefix = self.file_prefix + '_' + '_'.join([self.sim_mode] + asset)
             res['trade_file'] = file_prefix + '_'+ str(ix) + '_trades.csv'
             res['pnl_file'] = file_prefix + '_'+ str(ix) + '_dailydata.csv'
             output[str(ix)] = res
             all_trades = {}
             for i, tradepos in enumerate(closed_trades):
                 all_trades[i] = trade_position.tradepos2dict(tradepos)
             trades = pd.DataFrame.from_dict(all_trades).T
             trades.to_csv(res['trade_file'])
             ts.to_csv(res['pnl_file'])
             fname = file_prefix + '_stats.json'
             with open(fname, 'w') as ofile:
                 json.dump(output, ofile)
             cnx = dbaccess.connect(**self.dbconfig)
             #cnx.set_converter_class(mysql_helper.NumpyMySQLConverter)
             dbaccess.insert_row_by_dict(cnx, self.dbtable, res, is_replace=True)
             cnx.close()
             print 'The results for asset = %s, scen = %s are saved' % (asset, str(ix))
Exemple #4
0
 def run_all_assets(self):
     for idx, asset in enumerate(self.sim_assets):
         cont_map = self.cont_maplist[idx]
         output = self.load_curr_results(idx)
         if len(output) == 0:
             output = {'total': {}, 'cont': {}}
         elif len(output.keys()) == len(self.scenarios):
             continue
         self.set_config(idx)
         self.load_data(idx)
         for ix, s in enumerate(self.scenarios):
             file_prefix = self.file_prefix + '_' + '_'.join(self.sim_mode + asset)
             fname1 = file_prefix + str(ix) + '_trades.csv'
             fname2 = file_prefix + str(ix) + '_dailydata.csv'
             if os.path.isfile(fname1) and os.path.isfile(fname2):
                 continue
             for key, seq in zip(self.scen_keys, s):
                 self.config[key] = self.scen_param[key][seq]
             df_list = []
             trade_list = []
             for idy in range(abs(min(cont_map)), len(self.contlist[asset[0]]) - max(cont_map)):
                 cont = self.contlist[asset[0]][idy]
                 self.prepare_data(idx, cont_idx = idy)
                 sim_strat = self.sim_class(self.config)
                 sim_df, closed_trades = getattr(sim_strat, self.sim_func)()
                 df_list.append(sim_df)
                 trade_list = trade_list + closed_trades
                 (res_pnl, ts) = get_pnl_stats( [sim_df], self.config['marginrate'], 'm')
                 res_trade = get_trade_stats(closed_trades)
                 res =  dict( res_pnl.items() + res_trade.items())
                 res.update(dict(zip(self.scen_keys, s)))
                 res['asset'] = cont
                 if cont not in output['cont']:
                     output['cont'][cont] = {}
                 output['cont'][cont][ix] = res
             (res_pnl, ts) = get_pnl_stats(df_list, self.config['marginrate'], 'm')
             output[ix] = res
             res_trade = get_trade_stats(trade_list)
             res = dict(res_pnl.items() + res_trade.items())
             res.update(dict(zip(self.scen_keys, s)))
             res['asset'] = '_'.join(asset)
             output['total'][ix] = res
             print 'saving results for asset = %s, scen = %s' % (asset, str(ix))
             all_trades = {}
             for i, tradepos in enumerate(trade_list):
                 all_trades[i] = trade_position.tradepos2dict(tradepos)
             trades = pd.DataFrame.from_dict(all_trades).T
             trades.to_csv(fname1)
             ts.to_csv(fname2)
             fname = file_prefix + '_stats.json'
             with open(fname, 'w') as ofile:
                 json.dump(output, ofile)
         cont_df = pd.DataFrame()
         for idy in range(abs(min(cont_map)), len(self.contlist[asset[0]]) - max(cont_map)):
             cont = self.contlist[asset[0]][idy]
             if cont not in output['cont']:
                 continue
             res = scen_dict_to_df(output['cont'][cont])
             out_res = res[self.output_columns()]
             if len(cont_df) == 0:
                 cont_df = out_res[:30].copy(deep=True)
             else:
                 cont_df = cont_df.append(out_res[:30])
         fname = file_prefix + 'cont_stat.csv'
         cont_df.to_csv(fname)
         res = scen_dict_to_df(output['total'])
         out_res = res[self.output_columns()]
         if len(summary_df)==0:
             summary_df = out_res[:30].copy(deep = True)
         else:
             summary_df = summary_df.append(out_res[:30])
         fname = self.file_prefix + 'summary.csv'
         summary_df.to_csv(fname)
Exemple #5
0
 def run_all_assets(self):
     for idx, asset in enumerate(self.sim_assets):
         cont_map = self.cont_maplist[idx]
         output = self.load_curr_results(idx)
         if len(output) == 0:
             output = {'total': {}, 'cont': {}}
         elif len(output.keys()) == len(self.scenarios):
             continue
         self.set_config(idx)
         self.load_data(idx)
         for ix, s in enumerate(self.scenarios):
             file_prefix = self.file_prefix + '_' + '_'.join(self.sim_mode + asset)
             fname1 = file_prefix + str(ix) + '_trades.csv'
             fname2 = file_prefix + str(ix) + '_dailydata.csv'
             if os.path.isfile(fname1) and os.path.isfile(fname2):
                 continue
             for key, seq in zip(self.scen_keys, s):
                 self.config[key] = self.scen_param[key][seq]
             df_list = []
             trade_list = []
             for idy in range(abs(min(cont_map)), len(self.contlist[asset[0]]) - max(cont_map)):
                 cont = self.contlist[asset[0]][idy]
                 self.prepare_data(idx, cont_idx = idy)
                 sim_strat = self.sim_class(self.config)
                 sim_df, closed_trades = getattr(sim_strat, self.sim_func)()
                 df_list.append(sim_df)
                 trade_list = trade_list + closed_trades
                 (res_pnl, ts) = get_pnl_stats( sim_df, self.config['marginrate'], 'm', cost_ratio = self.cost_ratio)
                 res_trade = get_trade_stats(closed_trades)
                 res =  dict( res_pnl.items() + res_trade.items())
                 res.update(dict(zip(self.scen_keys, s)))
                 res['asset'] = cont
                 if cont not in output['cont']:
                     output['cont'][cont] = {}
                 output['cont'][cont][ix] = res
             (res_pnl, ts) = get_pnl_stats(df_list, self.config['marginrate'], 'm', cost_ratio = self.cost_ratio)
             output[ix] = res
             res_trade = get_trade_stats(trade_list)
             res = dict(res_pnl.items() + res_trade.items())
             res.update(dict(zip(self.scen_keys, s)))
             res['asset'] = '_'.join(asset)
             output['total'][ix] = res
             print 'saving results for asset = %s, scen = %s' % (asset, str(ix))
             all_trades = {}
             for i, tradepos in enumerate(trade_list):
                 all_trades[i] = trade_position.tradepos2dict(tradepos)
             trades = pd.DataFrame.from_dict(all_trades).T
             trades.to_csv(fname1)
             ts.to_csv(fname2)
             fname = file_prefix + '_stats.json'
             with open(fname, 'w') as ofile:
                 json.dump(output, ofile)
         cont_df = pd.DataFrame()
         for idy in range(abs(min(cont_map)), len(self.contlist[asset[0]]) - max(cont_map)):
             cont = self.contlist[asset[0]][idy]
             if cont not in output['cont']:
                 continue
             res = scen_dict_to_df(output['cont'][cont])
             out_res = res[self.output_columns()]
             if len(cont_df) == 0:
                 cont_df = out_res[:30].copy(deep=True)
             else:
                 cont_df = cont_df.append(out_res[:30])
         fname = file_prefix + 'cont_stat.csv'
         cont_df.to_csv(fname)
         res = scen_dict_to_df(output['total'])
         out_res = res[self.output_columns()]
         if len(summary_df)==0:
             summary_df = out_res[:30].copy(deep = True)
         else:
             summary_df = summary_df.append(out_res[:30])
         fname = self.file_prefix + 'summary.csv'
         summary_df.to_csv(fname)