Exemple #1
0
 def test_create_tt_trader(self):
     expert_a = PerfectExpert(Company.A)
     expert_b = PerfectExpert(Company.B)
     trader = TrustingTrader(expert_a, expert_b, 'test_color', 'test_name')
     self.assertIsNotNone(trader)
     self.assertEqual(trader.get_color(), 'test_color')
     self.assertEqual(trader.get_name(), 'test_name')
Exemple #2
0
def main_orig():
    """
    Code from the original main routine.
    Visualizes portfolio value over the testing period for different traders.
    """
    # Load stock market data for testing period
    stock_market_data = StockMarketData([Company.A, Company.B],
                                        [Period.TESTING])

    # create new stock exchange with initial portfolio cash for each traders
    stock_exchange = StockExchange(2000.0)

    # create the traders
    bah_trader = BuyAndHoldTrader('black', 'Buy and hold')
    tt_trader_obscure = TrustingTrader(ObscureExpert(Company.A),
                                       ObscureExpert(Company.B), 'green',
                                       'Trust experts')
    tt_trader2 = TrustingTrader2(ObscureExpert(Company.A),
                                 ObscureExpert(Company.B), 'limegreen',
                                 'Trust experts for sell only')
    dql_trader = deep_q_learning_trader.DeepQLearningTrader(
        ObscureExpert(Company.A),
        ObscureExpert(Company.B),
        True,
        False,
        'red',
        plot_name='Deep Q-learning trader')

    # run the stock exchange over the testing period, with 100 skipped trading days
    stock_exchange.run(stock_market_data,
                       [bah_trader, tt_trader_obscure, tt_trader2, dql_trader])

    # visualize the results
    stock_exchange.visualize_last_run()
Exemple #3
0
    def test_trade_vote_down_stock_a(self):
        expert_a = PerfectExpert(Company.A)
        expert_b = PerfectExpert(Company.B)
        trader = TrustingTrader(expert_a, expert_b, 'test_color', 'test_name')

        portfolio = Portfolio(1000.0, {Company.A: 10, Company.B: 10})
        stock_market_data = StockMarketData([Company.A, Company.B], [Period.TESTING]).deepcopy_first_n_items(4)
        order_list = trader.trade(portfolio, stock_market_data)
        self.assertIsNotNone(order_list)
        self.assertEqual(len(order_list), 2)
        self.assertEqual(order_list[0].type, OrderType.SELL)
        self.assertEqual(order_list[0].company, Company.A)
        self.assertEqual(order_list[0].amount, 10.0)
        self.assertEqual(order_list[1].type, OrderType.SELL)
        self.assertEqual(order_list[1].company, Company.B)
        self.assertEqual(order_list[1].amount, 10.0)
Exemple #4
0
def main_print_model_performance():
    """
    Just prints the final portfolio value and v score (return % per trading day)
    for training and testing data set for different traders.
    """
    stock_market_data_train = StockMarketData([Company.A, Company.B],
                                              [Period.TRAINING])
    # stock_market_data_train = stock_market_data_train.deepcopy_first_n_items(
    #     int(stock_market_data_train.get_row_count() / 5))
    stock_market_data_test = StockMarketData([Company.A, Company.B],
                                             [Period.TESTING])
    bah_trader = BuyAndHoldTrader(name='buy and hold')
    tt_trader1 = TrustingTrader(ObscureExpert(Company.A),
                                ObscureExpert(Company.B), 'green',
                                'trust experts, prefer A')
    tt_trader2 = TrustingTrader2(ObscureExpert(Company.A),
                                 ObscureExpert(Company.B), 'limegreen',
                                 'trust experts for sell only')
    dql_trader = deep_q_learning_trader.DeepQLearningTrader(
        ObscureExpert(Company.A), ObscureExpert(Company.B), True, False, 'red')
    all_traders = [bah_trader, tt_trader1, tt_trader2, dql_trader]
    trader_names = []
    for trader in all_traders:
        if isinstance(trader, deep_q_learning_trader.DeepQLearningTrader
                      ) and trader.plot_name is not None:
            trader_name = trader.plot_name
        else:
            trader_name = trader.get_name()
        trader_names.append(trader_name)
    max_trader_name_length = max((len(name) for name in trader_names))
    for trader, trader_name in zip(all_traders, trader_names):
        is_first_line = True
        for dataset, dataset_name, starting_cash in [
            (stock_market_data_train, 'train', 10000.0),
            (stock_market_data_test, 'test', 2000.0)
        ]:
            stock_exchange = StockExchange(starting_cash)
            stock_exchange.run(dataset, [trader])
            p = stock_exchange.get_final_portfolio_value(trader)
            samples = dataset.get_row_count()
            v = 100.0 * (math.pow(p / starting_cash, 1 / samples) - 1.0)
            if is_first_line:
                header = ('{: <' + str(max_trader_name_length) +
                          '}').format(trader_name)
            else:
                header = ' ' * max_trader_name_length
            header += f' ({dataset_name: <5}): '
            print(f'{header}{v:.5f}% return per trading day'
                  f' (final portfolio value of {p:.1e})')
            is_first_line = False
            if isinstance(trader, BuyAndHoldTrader):
                trader.reset()
        pyplot.legend(trader_names)
        pyplot.show()


# This main method evaluates all traders over the testing period and visualize the results.
if __name__ == "__main__":
    mpl.rcParams["savefig.directory"] = os.chdir(
        os.path.dirname(__file__) + '\\eval')

    # Load stock market data for testing period
    stock_market_data = StockMarketData([Company.A, Company.B],
                                        [Period.TESTING])

    # create new stock exchange with initial portfolio cash for each traders
    stock_exchange = StockExchange(2000.0)

    # create the traders
    bah_trader = BuyAndHoldTrader()
    tt_trader_obscure = TrustingTrader(ObscureExpert(Company.A),
                                       ObscureExpert(Company.B), 'green',
                                       'tt obscure')
    dql_trader = deep_q_learning_trader.DeepQLearningTrader(
        ObscureExpert(Company.A), ObscureExpert(Company.B), True, False, 'red')

    # run the stock exchange over the testing period, with 100 skipped trading days
    stock_exchange.run(stock_market_data,
                       [bah_trader, tt_trader_obscure, dql_trader])

    # visualize the results
    stock_exchange.visualize_last_run()