Exemple #1
0
def get_home_locations_by_census_tract(siteid, state_code, county_code):
    census_tract_geographies = get_from_data_source('CENSUS_TRACT_DF')
    census_tract_geographies = census_tract_geographies[
        (census_tract_geographies['state_code'] == state_code)
        & (census_tract_geographies['county_code'] == county_code)]

    home_locations = get_from_data_source('HOME_LOCATIONS_DF')
    site_home_locations = home_locations[
        (home_locations['siteid'] == siteid)
        & (home_locations['state_code'] == state_code)
        & (home_locations['county_code'] == county_code)]

    site_home_locations = site_home_locations[[
        'tract', 'visit_days', 'visitors_unq'
    ]]
    site_home_census_data = census_tract_geographies.merge(site_home_locations,
                                                           on='tract',
                                                           how='inner')

    svi_df = get_from_data_source('SVI_DF')
    svi_df = svi_df[svi_df['state_code'] == state_code]
    svi_df = svi_df.drop(columns=['state_code'])
    site_home_census_data = site_home_census_data.merge(svi_df,
                                                        on='tract',
                                                        how='inner')

    return site_home_census_data
Exemple #2
0
def get_project_home_locations_by_census_tract(project, state_code,
                                               county_code):
    census_tract_geographies = get_from_data_source('CENSUS_TRACT_DF')
    census_tract_geographies = census_tract_geographies[
        (census_tract_geographies['state_code'] == state_code)
        & (census_tract_geographies['county_code'] == county_code)]

    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()

    home_locations = get_from_data_source('HOME_LOCATIONS_DF')
    project_home_locations = home_locations[
        (home_locations['siteid'].isin(project_site_ids))
        & (home_locations['state_code'] == state_code)
        & (home_locations['county_code'] == county_code)]

    # for each tract, we need to sum visit days and visitors_unq
    project_home_locations = project_home_locations.groupby(
        by=['tract'], as_index=False)['visit_days', 'visitors_unq'].sum()
    project_home_census_data = census_tract_geographies.merge(
        project_home_locations, on='tract', how='inner')

    svi_df = get_from_data_source('SVI_DF')
    svi_df = svi_df[svi_df['state_code'] == state_code]
    svi_df = svi_df.drop(columns=['state_code'])
    project_home_census_data = project_home_census_data.merge(svi_df,
                                                              on='tract',
                                                              how='inner')

    return project_home_census_data
Exemple #3
0
def get_home_locations_by_state(siteid):
    state_boundaries = get_from_data_source('STATE_BOUNDARIES_DF')
    home_locations = get_from_data_source('HOME_LOCATIONS_DF')
    site_home_locations = home_locations[home_locations['siteid'] == siteid]
    site_home_locations = site_home_locations[[
        'state_code', 'state', 'visit_days', 'visitors_unq'
    ]]
    site_home_locations = site_home_locations.groupby(
        by=['state_code', 'state'], as_index=False).sum()
    site_home_state_data = state_boundaries.merge(site_home_locations,
                                                  on=['state_code', 'state'],
                                                  how='inner')
    return site_home_state_data
Exemple #4
0
def get_demographic_summary(siteid):
    svi_df = get_from_data_source('SVI_DF')
    home_locations = get_from_data_source('HOME_LOCATIONS_DF')

    project = get_project_from_site(siteid)
    census_tract_states = app_config.CENSUS_TRACT_STATES[project]
    svi_df = svi_df[svi_df['state_code'].isin(census_tract_states)]
    svi_df = svi_df.drop(columns=['state_code'])

    site_home_locations = home_locations[home_locations['siteid'] == siteid]
    demographics_data = site_home_locations.merge(svi_df,
                                                  on='tract',
                                                  how='inner')
    return demographics_data
Exemple #5
0
def _get_project_estimates(project, period):
    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()
    df = get_from_data_source('MONTHLY_VISITATION_DF')
    project_sites_data = df[df['trail'].isin(project_site_ids)]

    if period == 'monthly':
        project_sites_data = project_sites_data.drop(columns='year').groupby(
            by=['trail', 'month'], as_index=False).mean()
        project_sites_data = project_sites_data.drop(columns='trail').groupby(
            by=['month']).sum()
    elif period == 'annual':
        project_sites_data = project_sites_data.drop(
            columns=['trail', 'month']).groupby(by=['year']).sum()

    project_sites_data = project_sites_data[[
        'estimate', 'log_estimate', 'flickr', 'twitter', 'instag', 'wta',
        'alltrails', 'onsite', 'log_onsite', 'data_days'
    ]]

    project_sites_data['log_estimate'] = np.log(
        project_sites_data['estimate'] + 1)
    project_sites_data['log_onsite'] = np.log(project_sites_data['onsite'] + 1)
    project_sites_data.reset_index(drop=False, inplace=True)
    return project_sites_data
def get_project_readme(readme_type, project=None):
    project_readme_cache = get_from_data_source('PROJECT_README')
    if readme_type == 'VISITS':
        return project_readme_cache[project + '_VISITS']
    elif readme_type == 'INFO':
        return project_readme_cache[project]
    else:
        return project_readme_cache[readme_type]
Exemple #7
0
def get_project_home_locations_by_state(project):
    state_boundaries = get_from_data_source('STATE_BOUNDARIES_DF')
    home_locations = get_from_data_source('HOME_LOCATIONS_DF')

    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()

    project_home_locations = home_locations[home_locations['siteid'].isin(
        project_site_ids)]
    project_home_locations = project_home_locations[[
        'state_code', 'state', 'visit_days', 'visitors_unq'
    ]]

    project_home_locations = project_home_locations.groupby(
        by=['state_code', 'state'], as_index=False).sum()
    project_home_state_data = state_boundaries.merge(
        project_home_locations, on=['state_code', 'state'], how='inner')
    return project_home_state_data
Exemple #8
0
def _get_project_visitation_data(project, period):
    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()

    if period == 'monthly':
        df = get_from_data_source('MONTHLY_VISITATION_DF')
        group_by_cols = ['year', 'month']
    else:
        df = get_from_data_source('WEEKLY_VISITATION_DF')
        group_by_cols = ['year', 'month', 'week']

    project_sites_data = df[df['trail'].isin(project_site_ids)]
    project_sites_data = project_sites_data.drop('trail', axis=1)
    project_sites_data = project_sites_data.groupby(group_by_cols,
                                                    as_index=False).sum()
    project_sites_data['log_estimate'] = np.log(
        project_sites_data['estimate'] + 1)
    return project_sites_data
Exemple #9
0
def get_home_locations_by_county(siteid, state_code):
    county_geographies = get_from_data_source('COUNTIES_DF')
    county_geographies = county_geographies[county_geographies['state_code'] ==
                                            state_code]

    home_locations = get_from_data_source('HOME_LOCATIONS_DF')
    site_home_locations = home_locations[
        (home_locations['siteid'] == siteid)
        & (home_locations['state_code'] == state_code)]

    site_home_locations = site_home_locations[[
        'county_code', 'county', 'visit_days', 'visitors_unq'
    ]]
    site_home_locations = site_home_locations.groupby(
        by=['county_code', 'county'], as_index=False).sum()

    site_home_county_data = county_geographies.merge(
        site_home_locations, on=['county_code', 'county'], how='inner')
    return site_home_county_data
Exemple #10
0
def get_project_demographic_summary(project):
    svi_df = get_from_data_source('SVI_DF')
    home_locations = get_from_data_source('HOME_LOCATIONS_DF')

    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()

    project_home_locations = home_locations[home_locations['siteid'].isin(
        project_site_ids)]
    project_home_locations = project_home_locations.groupby(
        by=['tract'], as_index=False).sum()

    census_tract_states = app_config.CENSUS_TRACT_STATES[project]
    svi_df = svi_df[svi_df['state_code'].isin(census_tract_states)]
    svi_df = svi_df.drop(columns=['state_code'])
    demographics_data = project_home_locations.merge(svi_df,
                                                     on='tract',
                                                     how='inner')
    return demographics_data
Exemple #11
0
def get_project_last_year_estimates(project):
    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()
    df = get_from_data_source('MONTHLY_VISITATION_DF')
    project_sites_data = df[df['trail'].isin(project_site_ids)]
    project_sites_data = project_sites_data[project_sites_data['year'] == 2018]
    project_sites_data = project_sites_data.groupby(by=['trail'],
                                                    as_index=False).sum()
    project_sites_data = project_sites_data[['trail', 'estimate']]
    return project_sites_data
Exemple #12
0
def _get_estimates(siteid, period):
    monthly_df = get_from_data_source('MONTHLY_VISITATION_DF')
    site_data = monthly_df[monthly_df['trail'] == siteid]
    site_data = site_data.groupby(
        by=['month']).mean() if period == 'monthly' else site_data.groupby(
            by=['year']).sum()
    site_data = site_data[[
        'estimate', 'log_estimate', 'flickr', 'twitter', 'instag', 'wta',
        'alltrails', 'ebird', 'onsite', 'log_onsite', 'data_days'
    ]]
    site_data.reset_index(inplace=True)
    return site_data
Exemple #13
0
def get_project_home_locations_by_county(project, state_code):
    county_geographies = get_from_data_source('COUNTIES_DF')
    county_geographies = county_geographies[county_geographies['state_code'] ==
                                            state_code]

    home_locations = get_from_data_source('HOME_LOCATIONS_DF')

    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()

    project_home_locations = home_locations[
        (home_locations['siteid'].isin(project_site_ids))
        & (home_locations['state_code'] == state_code)]

    project_home_locations = project_home_locations[[
        'county_code', 'county', 'visit_days', 'visitors_unq'
    ]]
    project_home_locations = project_home_locations.groupby(
        by=['county_code', 'county'], as_index=False).sum()

    project_home_county_data = county_geographies.merge(
        project_home_locations, on=['county_code', 'county'], how='inner')
    return project_home_county_data
Exemple #14
0
def get_project_home_locations(project):
    home_locations = get_from_data_source('HOME_LOCATIONS_DF')
    project_sites = get_project_sites(project)
    project_site_ids = project_sites['siteid'].drop_duplicates()

    project_home_locations = home_locations[home_locations['siteid'].isin(
        project_site_ids)]

    # International doesn't have state and counties and hence a three column group by will exclude it
    # extra effort to include international
    international_visits = project_home_locations[
        project_home_locations['country'] == 'International']
    international_visits = international_visits.groupby(['country'],
                                                        as_index=False).sum()
    project_home_locations = project_home_locations.groupby(
        by=['country', 'state', 'county'], as_index=False).sum()
    project_home_locations = project_home_locations.append(
        international_visits, ignore_index=True, sort=False)

    return _treefy_home_locations(project, project_home_locations)
def get_project_sites(project_group):
    allsites = get_from_data_source('ALLSITES_DF')
    project_sites = allsites[allsites['Prjct_code'].str.contains(
        project_group)]
    return project_sites
Exemple #16
0
def get_monthly_visitation(siteid):
    monthly_df = get_from_data_source('MONTHLY_VISITATION_DF')
    site_data = monthly_df[monthly_df['trail'] == siteid]
    return site_data
def get_project_from_site(siteid):
    allsites = get_from_data_source('ALLSITES_DF')
    site = allsites[allsites['siteid'] == siteid]
    return site[['Prjct_code']].iat[0, 0]
Exemple #18
0
def get_home_locations(siteid):
    home_locations = get_from_data_source('HOME_LOCATIONS_DF')
    site_home_locations = home_locations[home_locations['siteid'] == siteid]
    return _treefy_home_locations(siteid, site_home_locations)
Exemple #19
0
def get_weekly_visitation(siteid):
    weekly_df = get_from_data_source('WEEKLY_VISITATION_DF')
    site_data = weekly_df[weekly_df['trail'] == siteid]
    return site_data