def visdom_image(img_dict, window): for idx, key in enumerate(img_dict): win = window + idx tensor_img = train_utils.tensor2im(img_dict[key].data) visdom.image(tensor_img.transpose([2, 0, 1]), opts=dict(title=key), win=win)
def test(loader_test, visualAttentionNet, root_dir): visualAttentionNet.eval() for itr, data in enumerate(loader_test): testImg, fileName = data[0], data[1] testImg = testImg.cuda() with torch.no_grad(): test_attention_result = visualAttentionNet(testImg) test_recon_result_img = train_utils.tensor2im( test_attention_result) norm_input_img = train_utils.tensor2im(testImg + test_attention_result) recon_save_dir = root_dir + 'visual_attention_map_' + fileName[ 0].split('.')[0] + ('.png') recon_save_dir2 = root_dir + 'sum_' + fileName[0].split('.')[0] + ( '.png') train_utils.save_images(test_recon_result_img, recon_save_dir) train_utils.save_images(norm_input_img, recon_save_dir2)
def test(args, loader_test, model_AttentionNet, epoch, root_dir) : model_AttentionNet.eval() for itr, data in enumerate(loader_test): testImg, fileName = data[0], data[1] if args.cuda: testImg = testImg.cuda() with torch.no_grad(): test_result = model_AttentionNet(testImg) test_result_img = train_utils.tensor2im(test_result) result_save_dir = root_dir + fileName[0].split('.')[0]+('_epoch_{}_itr_{}.png'.format(epoch, itr)) train_utils.save_images(test_result_img, result_save_dir)
def test(loader_test, VAN, EN, root_dir): VAN.eval() EN.eval() for itr, data in enumerate(loader_test): testImg, img_name = data[0], data[1] testImg = testImg.cuda() with torch.no_grad(): visual_attention_map = VAN(testImg) enhance_result = EN(testImg, visual_attention_map) enhance_result_img = train_utils.tensor2im(enhance_result) result_save_dir = root_dir + 'enhance'+ img_name[0].split('.')[0]+('.png') train_utils.save_images(enhance_result_img, result_save_dir)