Exemple #1
0
def experiment():

	X, y = load_data("./data/wdbc.data")
	
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

	scaler = StandardScaler()
	X_train_std = scaler.fit_transform(X_train)
	X_test_std = scaler.transform(X_test)

	hparam_grid = {"C": 10 ** np.linspace(-3, 1, 10)}

	opt_model = select_hyperparameters(LogisticRegression(random_state=42), 
									   hparam_grid, 
									   X_train_std, y_train, 
									   "cvresults.csv")

	evaluate_model(opt_model, X_test_std, y_test, "best_model")
Exemple #2
0
def report_scores(model: ModelInterface, batch: List[object],
                  label: List[int]) -> Tuple[float, float]:
    roc_auc, prc_auc, pred_label = evaluate_model(model,
                                                  batch,
                                                  label,
                                                  show_stats=True)
    log.info(f'test: {util.stat_string(label, pred_label)}')
    log.info(f'ROC-AUC: {roc_auc}')
    log.info(f'PRC-AUC: {prc_auc}')

    return roc_auc, prc_auc
Exemple #3
0
def main(config):

    ##### EXPERIMENT #####
    savedir = experiment_mkdir(config)

    ##### DATASET #####
    db = TCGDB.TCGDB(config["path"]["tcg_root"])

    db.open()

    db.set_subclasses(
        train_subclasses=int(config["training-mode"]["subclasses"]))

    print("Finished opening TCG dataset.")

    ##### LEARNING #####
    for run_id in range(
            db.get_number_runs(
                protocol_type=config["training-mode"]["protocol_type"])):

        X_train, Y_train, X_test, Y_test = db.get_train_test_data(
            run_id=run_id,
            protocol_type=config["training-mode"]["protocol_type"])

        print(
            "\n{:10}: ".format("Run"),
            db.get_train_test_set(
                run_id=run_id,
                protocol_type=config["training-mode"]["protocol_type"]))
        print("{:10}: ".format("X_train"), X_train.shape,
              " | {:10}: ".format("Y_train"), Y_train.shape)
        print("{:10}: ".format("X_test"), X_test.shape,
              " | {:10}: ".format("Y_test"), Y_test.shape)

        model = train.fit_model(config, X_train, Y_train, X_test, Y_test,
                                savedir, str(run_id))

        train.evaluate_model(config, model, X_test, Y_test, savedir,
                             str(run_id))
Exemple #4
0
def main(opts):
    """Main function for the training pipeline
    :opts: commandline arguments
    :returns: None
    """
    pprint(vars(opts))
    ##########################################################################
    #                             Basic settings                             #
    ##########################################################################
    exp_dir = 'experiments'
    log_dir = os.path.join(exp_dir, 'logs')
    model_dir = os.path.join(exp_dir, 'models')
    os.makedirs(model_dir, exist_ok=True)

    os.makedirs(os.path.join(log_dir, opts.run_name), exist_ok=True)
    with open(os.path.join(log_dir, opts.run_name, "args.json"), 'w') as f:
        json.dump(vars(opts), f, indent=True)

    ##########################################################################
    #  Define all the necessary variables for model training and evaluation  #
    ##########################################################################
    writer = SummaryWriter(os.path.join(log_dir, opts.run_name))

    train_dataset = SegmentationDataset(is_train=True)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=opts.batch_size,
                                               num_workers=4,
                                               drop_last=False,
                                               shuffle=True)

    val_dataset = SegmentationDataset(is_train=False)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=20,
                                             shuffle=False,
                                             num_workers=0,
                                             drop_last=False)

    model = load_model(opts, n_classes=4)

    if torch.cuda.is_available():
        model = model.cuda()

    optimizer = optim.Adam(model.parameters(), lr=opts.lr, weight_decay=0.1)

    if opts.lr_scheduler == "plateau":
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer,
            patience=opts.patience,
            factor=.3,
            threshold=0.1,
            verbose=True)
    elif opts.lr_scheduler == "step":
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                    step_size=3,
                                                    gamma=opts.gamma)

    best_val_loss = float('inf')
    best_val_accu = float(0)

    iteration_change_loss = 0
    t_start_training = time.time()
    ##########################################################################
    #                           Main training loop                           #
    ##########################################################################
    for epoch in range(opts.epochs):
        t_start = time.time()

        ############################################################
        #  The actual training and validation step for each epoch  #
        ############################################################
        train_loss, train_metric = train_model(model, train_loader, epoch,
                                               optimizer, writer, opts)

        with torch.no_grad():
            val_loss, val_metric = evaluate_model(model, val_loader, epoch,
                                                  writer, opts)

            ##############################
            #  Adjust the learning rate  #
            ##############################
            if opts.lr_scheduler == 'plateau':
                scheduler.step(val_loss)
            elif opts.lr_scheduler == 'step':
                scheduler.step()

        t_end = time.time()
        delta = t_end - t_start

        utils.print_epoch_progress(epoch, opts.epochs, train_loss, val_loss,
                                   delta, train_metric, val_metric)

    t_end_training = time.time()
    print('training took {}s'.format(t_end_training - t_start_training))
Exemple #5
0
########## DATA LOADERS ##########
train_loader, val_loader, test_loader = load_data(DATA_DIR, train_img_ids, val_img_ids, test_img_ids, CONTEXT_SIZE, BATCH_SIZE, NUM_WORKERS, MAX_BG_BOXES)

########## CREATE MODEL & LOSS FN ##########
model = WebObjExtractionNet(ROI_POOL_OUTPUT_SIZE, IMG_HEIGHT, N_CLASSES, BACKBONE, USE_ATTENTION, HIDDEN_DIM, TRAINABLE_CONVNET, DROP_PROB,
                            USE_BBOX_FEAT, CLASS_NAMES).to(device)

optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
criterion = nn.CrossEntropyLoss(reduction='sum').to(device)

########## TRAIN MODEL ##########
train_model(model, train_loader, optimizer, criterion, N_EPOCHS, device, val_loader, EVAL_INTERVAL, log_file, 'ckpt_%d.pth' % args.device)

########## EVALUATE TEST PERFORMANCE ##########
print('Evaluating test data class wise accuracies...')
evaluate_model(model, test_loader, criterion, device, 'TEST', log_file)

with open (test_acc_domainwise_file, 'w') as f:
    f.write('Domain,N_examples,%s,%s,%s\n' % (CLASS_NAMES[1], CLASS_NAMES[2], CLASS_NAMES[3]))

print('Evaluating per domain accuracy for %d test domains...' % len(test_domains))
for domain in test_domains:
    print('\n---> Domain:', domain)
    test_dataset = WebDataset(DATA_DIR, np.loadtxt('%s/domain_wise_imgs/%s.txt' % (SPLIT_DIR, domain), np.int32).reshape(-1), CONTEXT_SIZE, max_bg_boxes=-1)
    test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=NUM_WORKERS, collate_fn=custom_collate_fn, drop_last=False)

    per_class_acc = evaluate_model(model, test_loader, criterion, device, 'TEST')

    with open (test_acc_domainwise_file, 'a') as f:
        f.write('%s,%d,%.2f,%.2f,%.2f\n' % (domain, len(test_dataset), 100*per_class_acc[1], 100*per_class_acc[2], 100*per_class_acc[3]))
Exemple #6
0
def main():
    args = parse_args()
    current_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.gmtime())
    model_name = 'model_{}_stack_{}_feat_{}_g_{}_{}_' if args.prob <= 0 else 'model_aug_{}_stack_{}_feat_{}_g_{}_{}_'
    model_name += 'pt_' if args.pre_train else ''
    model_name += 'cbam_' if args.use_cbam else ''
    model_name += 'unsup_' if args.unsupervise != 0 else ''
    model_name += 'norm_' if args.normalized else ''
    save_dir = args.save_dir + model_name.format(args.model_type, args.num_stacks, args.num_features, args.gamma, args.loss_type)\
               + current_time + '/'
    train_images_dir = PATH + 'train_images/{}.jpg'
    train = pd.read_csv(PATH + 'train_fixed.csv')  # .sample(n=20).reset_index()
    train = remove_out_image_cars(train)

    if args.debug:
        train = train.iloc[:50, :]
    df_train, df_dev = train_test_split(train, test_size=args.val_size, random_state=42)
    df_dev.to_csv('val.csv', index=False)
    # Augmentation
    albu_list = [RandomBrightnessContrast(brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), p=0.3),
                 RandomGamma(p=0.2), HueSaturationValue(p=0.3), RGBShift(p=0.3), MotionBlur(p=0.1), Blur(p=0.1),
                 GaussNoise(var_limit=(20, 100), p=0.2),
                 ChannelShuffle(p=0.2),
                 #Normalize(mean=[145.3834, 136.9748, 122.7390], std=[95.1996, 94.6686, 85.9170])
                 ]

    transform = Compose(albu_list, p=args.prob)

    # Create dataset objects
    train_dataset = CarDataset(df_train, train_images_dir, sigma=args.sigma, training=True, transform=transform,
                               normalized=args.normalized)
    dev_dataset = CarDataset(df_dev, train_images_dir, sigma=args.sigma, training=False, normalized=args.normalized)
    BATCH_SIZE = args.batch_size

    # Create data generators - they will produce batches
    # transform not using yet
    train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
    dev_loader = DataLoader(dataset=dev_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4)
    # Gets the GPU if there is one, otherwise the cpu
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)
    print('Running on', torch.cuda.get_device_name(), 'x', torch.cuda.device_count())

    if args.checkpoint:
        model, start_epoch = load_checkpoints(args)
        save_dir = args.checkpoint + '/'
        n_epochs = start_epoch + args.epoch
        history = pd.read_csv(os.path.join(save_dir, 'history.csv'))
        history = history.iloc[: start_epoch + 1]
        args.lr = args.lr / 10
    else:
        start_epoch = 0
        n_epochs = args.epoch
        if args.model_type == 'UNet':
            model = MyUNet(args.num_classes).to(device)
        elif args.model_type == 'HG':
            model = HourglassNet(nStacks=args.num_stacks, nModules=1, nFeat=args.num_features, nClasses=args.num_classes)
            model.cuda()
        elif args.model_type == 'HG2':
            model = PoseNet(nstack=args.num_stacks, inp_dim=args.num_features,
                            oup_dim=args.num_classes, use_cbam=args.use_cbam)
            model = model.cuda()
            if args.num_stacks <= 2 and args.pre_train:
                save = torch.load('./weights/checkpoint_2hg.pt')
            elif args.pre_train:
                save = torch.load('./weights/checkpoint_8hg.pt')
            save = save['state_dict']
            # print(model)
            #  print(list(save.keys()))
            # print(model.state_dict().keys())
            load_my_state_dict(model, save)
            del save

        elif args.model_type == 'LHG':
            heads = {'hm': 8}
            model = create_model('hourglass', heads, 256)
            model = model.cuda()
            if args.pre_train:
                model_dir = './weights/ctdet_coco_hg.pth'
                load_model(model, model_dir)
        elif args.model_type in ['res_34', 'res_50', 'res_101', 'res_152']:
            heads = {'hm': 8}
            model = create_model(args.model_type, heads, 0)
            model = model.cuda()

        history = pd.DataFrame()

    if torch.cuda.device_count() > 1 and not isinstance(model, nn.DataParallel):
        model = nn.DataParallel(model)

    print('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[5, 10, 15, 20, 25, 30, 35, 40, 45, 50], gamma=0.5)
    # exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=max(n_epochs, 10) * len(train_loader) // 3, gamma=0.1)
    best_loss = 1e6
    # save configuration
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
        with open(save_dir + 'config.txt', 'w') as f:
            f.write(str(args))
    # unsupervise part
    test_images_dir = PATH + 'test_images/{}.jpg'
    test = pd.read_csv(PATH + 'sample_submission.csv')
    test = test.sample(n=train.shape[0], replace=True)#.reset_index()
    transform_test = Compose(albu_list, p=1)
    test_dataset = CarDatasetUnsup(test, test_images_dir, sigma=args.sigma, training= args.unsupervise != 0, transform=transform_test,
                                   normalized=args.normalized)
    test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)

    for epoch in range(start_epoch + 1, n_epochs):
        torch.cuda.empty_cache()
        gc.collect()
        train_loss, train_final_loss = train_model(save_dir, model, epoch, train_loader, test_loader, device,
                                                   optimizer, history,
                                                    args)
        best_loss, eval_loss, clf_losses, regr_losses = evaluate_model(model, epoch, dev_loader, device, best_loss, save_dir, history, args)
        cur_lr = optimizer.state_dict()['param_groups'][0]['lr']
        with open(save_dir + 'log.txt', 'a+') as f:
            line = 'Epoch: {}; Train total loss: {:.3f}; Train final loss: {:.3f}; Eval final loss: {:.3f}; Clf loss: {:.3f}; Regr loss: {:.3f}; Best eval loss: {:.3f}; LR: {}\n' \
                .format(epoch,
                        train_loss,
                        train_final_loss,
                        eval_loss,
                        clf_losses,
                        regr_losses,
                        best_loss,
                        cur_lr)
            f.write(line)
        history.to_csv(save_dir + 'history.csv', index=False)
        scheduler.step()
Exemple #7
0
def main(opts):
    """Main function for the training pipeline
    :opts: commandlien arguments
    :returns: None
    """
    ##########################################################################
    #                             Basic settings                             #
    ##########################################################################
    exp_dir = 'experiments'
    log_dir = os.path.join(exp_dir, 'logs')
    model_dir = os.path.join(exp_dir, 'models')
    os.makedirs(os.path.join(model_dir, opts.run_name), exist_ok=True)
    os.makedirs(os.path.join(log_dir, opts.run_name))

    pprint(vars(opts))
    with open(os.path.join(log_dir, opts.run_name, "args.json"), 'w') as f:
        json.dump(vars(opts), f, indent=True)

    torch.manual_seed(opts.seed)
    np.random.seed(opts.seed)
    random.seed(opts.seed)

    ##########################################################################
    #  Define all the necessary variables for model training and evaluation  #
    ##########################################################################
    writer = SummaryWriter(os.path.join(log_dir, opts.run_name), flush_secs=5)

    if opts.train_mode == 'combined':
        train_dataset = get_train_dataset(opts.data_root, opts, opts.folder1,
                                          opts.folder2, opts.folder3)
    elif opts.train_mode == 'oversampling':
        train_dataset = get_train_dataset_by_oversampling(
            opts.data_root, opts, opts.folder1, opts.folder2, opts.folder3)
    elif opts.train_mode == 'pretrain_and_finetune':
        train_dataset, finetune_dataset = get_pretrain_and_finetune_datast(
            opts.data_root, opts, opts.folder1, opts.folder2, opts.folder3)
        finetune_loader = torch.utils.data.DataLoader(
            finetune_dataset,
            batch_size=opts.batch_size,
            num_workers=opts.num_workers,
            drop_last=False,
            shuffle=True)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=opts.batch_size,
                                               num_workers=opts.num_workers,
                                               drop_last=False,
                                               shuffle=True)

    val_dataset = get_val_dataset(os.path.join('data', 'val'), opts)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=opts.eval_batch_size,
                                             shuffle=False,
                                             num_workers=opts.num_workers,
                                             drop_last=False)

    test_dataset = get_test_dataset(os.path.join('data', 'test'), opts)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=opts.eval_batch_size,
                                              shuffle=False,
                                              num_workers=opts.num_workers,
                                              drop_last=False)

    assert train_dataset.class_to_idx == val_dataset.class_to_idx == test_dataset.class_to_idx, "Mapping not correct"

    model = get_model(opts)

    opts.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    if torch.cuda.device_count() > 1 and not opts.no_data_parallel:
        model = nn.DataParallel(model)

    model = model.to(opts.device)

    optimizer = optim.RMSprop(model.parameters(),
                              lr=opts.lr,
                              alpha=0.9,
                              weight_decay=1e-5,
                              momentum=0.9)
    scheduler = get_lr_scheduler(optimizer, opts)

    best_val_loss = float('inf')
    best_val_accu = float(0)
    best_val_rec = float(0)
    best_val_prec = float(0)
    best_val_f1 = float(0)
    best_val_auc = float(0)

    iteration_change_loss = 0
    t_start_training = time.time()

    ##########################################################################
    #                           Main training loop                           #
    ##########################################################################
    for epoch in range(opts.epochs):
        current_lr = get_lr(optimizer)
        t_start = time.time()

        ############################################################
        #  The actual training and validation step for each epoch  #
        ############################################################
        train_loss, train_metric = train_model(model, train_loader, optimizer,
                                               opts)

        if epoch == opts.finetune_epoch and opts.train_mode == 'pretrain_and_finetune':
            train_loader = finetune_loader
            optimizer = optim.RMSprop(model.parameters(),
                                      lr=opts.lr,
                                      alpha=0.9,
                                      weight_decay=1e-5,
                                      momentum=0.9)
            scheduler = torch.optim.lr_scheduler.StepLR(
                optimizer,
                step_size=opts.step_size_finetuning,
                gamma=opts.gamma)

        # Run the validation set
        with torch.no_grad():
            val_loss, val_metric = evaluate_model(model, val_loader, opts)

        ##############################
        #  Write to summary writer   #
        ##############################

        train_acc, val_acc = train_metric['accuracy'], val_metric['accuracy']
        train_rec, val_rec = train_metric['recalls'], val_metric['recalls']
        train_prec, val_prec = train_metric['precisions'], val_metric[
            'precisions']
        train_f1, val_f1 = train_metric['f1'], val_metric['f1']
        train_auc, val_auc = train_metric['auc'], val_metric['auc']

        writer.add_scalar('Loss/Train', train_loss, epoch)
        writer.add_scalar('Accuracy/Train', train_acc, epoch)
        writer.add_scalar('Precision/Train', train_prec, epoch)
        writer.add_scalar('Recall/Train', train_rec, epoch)
        writer.add_scalar('F1/Train', train_f1, epoch)
        writer.add_scalar('AUC/Train', train_auc, epoch)

        writer.add_scalar('Loss/Val', val_loss, epoch)
        writer.add_scalar('Accuracy/Val', val_acc, epoch)
        writer.add_scalar('Precision/Val', val_prec, epoch)
        writer.add_scalar('Recall/Val', val_rec, epoch)
        writer.add_scalar('F1/Val', val_f1, epoch)
        writer.add_scalar('AUC/Val', val_auc, epoch)

        ##############################
        #  Adjust the learning rate  #
        ##############################
        if opts.lr_scheduler == 'plateau':
            scheduler.step(val_loss)
        elif opts.lr_scheduler in ['step', 'cosine']:
            scheduler.step()

        t_end = time.time()
        delta = t_end - t_start

        print_epoch_progress(epoch, opts.epochs, train_loss, val_loss, delta,
                             train_metric, val_metric)
        iteration_change_loss += 1
        print('-' * 30)

        if val_acc > best_val_accu:
            best_val_accu = val_acc
            if bool(opts.save_model):
                torch.save(
                    model.state_dict(),
                    os.path.join(model_dir, opts.run_name,
                                 'best_state_dict.pth'))

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            iteration_change_loss = 0

        if val_rec > best_val_rec:
            best_val_rec = val_rec

        if val_prec > best_val_prec:
            best_val_prec = val_prec

        if val_f1 > best_val_f1:
            best_val_f1 = val_f1
            print(f'The best validation F1-score is now {best_val_f1}')
            print(
                f'The validation accuracy and AUC are now {val_acc} and {val_auc}'
            )

        if val_auc > best_val_auc:
            best_val_auc = val_auc

        if iteration_change_loss == opts.patience and opts.early_stopping:
            print(
                ('Early stopping after {0} iterations without the decrease ' +
                 'of the val loss').format(iteration_change_loss))
            break

    t_end_training = time.time()
    print(f'training took {t_end_training - t_start_training}s')
    print(f'Best validation accuracy: {best_val_accu}')
    print(f'Best validation loss: {best_val_loss}')
    print(f'Best validation precision: {best_val_prec}')
    print(f'Best validation recall: {best_val_rec}')
    print(f'Best validation f1: {best_val_f1}')
    print(f'Best validation AUC: {best_val_auc}')

    with torch.no_grad():
        if opts.train_mode in ['combined', 'oversampling']:
            model.load_state_dict(
                torch.load(
                    os.path.join(model_dir, opts.run_name,
                                 'best_state_dict.pth')))
        test_loss, test_metric = evaluate_model(model, test_loader, opts)

    print(f'The best test F1: {test_metric["f1"]}')
    print(f'The best test auc: {test_metric["auc"]}')
    print(f'The best test accuracy: {test_metric["accuracy"]}')
Exemple #8
0
def main(opts):
    """Main function for the training pipeline
    :opts: commandlien arguments
    :returns: None
    """
    ##########################################################################
    #                             Basic settings                             #
    ##########################################################################
    exp_dir = 'experiments'
    log_dir = os.path.join(exp_dir, 'logs')
    model_dir = os.path.join(exp_dir, 'models')
    os.makedirs(os.path.join(model_dir, opts.run_name), exist_ok=True)

    ##########################################################################
    #  Define all the necessary variables for model training and evaluation  #
    ##########################################################################
    writer = SummaryWriter(os.path.join(log_dir, opts.run_name), flush_secs=5)

    train_dataset = get_train_dataset(root=os.path.join('data', 'train'))
    weights = make_weights_for_balanced_classes(train_dataset.imgs,
                                                len(train_dataset.classes))
    weights = torch.DoubleTensor(weights)
    sampler = torch.utils.data.sampler.WeightedRandomSampler(
        weights, len(weights))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=opts.batch_size,
                                               num_workers=6,
                                               drop_last=False,
                                               sampler=sampler)

    val_dataset = get_val_dataset(root=os.path.join('data', 'val'))
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=opts.batch_size,
                                             shuffle=False,
                                             num_workers=6,
                                             drop_last=False)

    assert train_dataset.class_to_idx == val_dataset.class_to_idx, "Mapping not correct"

    model = load_baseline(n_classes=2)

    if torch.cuda.is_available():
        model = model.cuda()
    optimizer = optim.Adam(model.parameters(), lr=opts.lr, weight_decay=0.1)

    if opts.lr_scheduler == "plateau":
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                               patience=3,
                                                               factor=.3,
                                                               threshold=1e-4,
                                                               verbose=True)
    elif opts.lr_scheduler == "step":
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                    step_size=3,
                                                    gamma=opts.gamma)

    best_val_loss = float('inf')
    best_val_accu = float(0)

    iteration_change_loss = 0
    t_start_training = time.time()

    ##########################################################################
    #                           Main training loop                           #
    ##########################################################################
    for epoch in range(opts.epochs):
        current_lr = get_lr(optimizer)
        t_start = time.time()

        ############################################################
        #  The actual training and validation step for each epoch  #
        ############################################################
        train_loss, train_metric = train_model(model, train_loader, epoch,
                                               opts.epochs, optimizer, writer,
                                               current_lr, opts.log_every)

        with torch.no_grad():
            val_loss, val_metric = evaluate_model(model, val_loader, epoch,
                                                  opts.epochs, writer,
                                                  current_lr)

        ##############################
        #  Write to summary writer   #
        ##############################

        writer.add_scalar('Loss/Train', train_loss, epoch)
        writer.add_scalar('Accuracy/Train', train_metric['accuracy'], epoch)
        writer.add_scalar('Precision/Train', train_metric['precisions'], epoch)
        writer.add_scalar('Recall/Train', train_metric['recalls'], epoch)
        writer.add_scalar('F1/Train', train_metric['f1'], epoch)

        writer.add_scalar('Loss/Val', val_loss, epoch)
        writer.add_scalar('Accuracy/Val', val_metric['accuracy'], epoch)
        writer.add_scalar('Precision/Val', val_metric['precisions'], epoch)
        writer.add_scalar('Recall/Val', val_metric['recalls'], epoch)
        writer.add_scalar('F1/Val', val_metric['f1'], epoch)

        ##############################
        #  Adjust the learning rate  #
        ##############################
        if opts.lr_scheduler == 'plateau':
            scheduler.step(val_loss)
        elif opts.lr_scheduler == 'step':
            scheduler.step()

        t_end = time.time()
        delta = t_end - t_start

        print_epoch_progress(train_loss, val_loss, delta, train_metric,
                             val_metric)
        iteration_change_loss += 1
        print('-' * 30)

        train_acc, val_acc = train_metric['accuracy'], val_metric['accuracy']
        # file_name = ('val_acc_{}_train_acc_{}_epoch_{}.pth'.
        #              format(train_acc, val_acc, epoch))
        # torch.save(model, os.path.join(model_dir, opts.run_name, file_name))

        if val_acc > best_val_accu:
            best_val_accu = val_acc
            if bool(opts.save_model):
                torch.save(model,
                           os.path.join(model_dir, opts.run_name, 'best.pth'))

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            iteration_change_loss = 0

        if iteration_change_loss == opts.patience and opts.early_stopping:
            print(
                ('Early stopping after {0} iterations without the decrease ' +
                 'of the val loss').format(iteration_change_loss))
            break
    t_end_training = time.time()
    print('training took {}s'.format(t_end_training - t_start_training))
Exemple #9
0
def eval_score(results_file_base,
               results_file_ext,
               weights_filename,
               saliency=False):
    '''
    Evaluate a trained model on the score dataset

    Arguments
    - results_file_base: str
        Base results file name. Usually includes run_id but leaves out file extension
    - results_file_ext: str
        Results file extension, exluduing the period (e.g. 'results')
    - weights_filename: str
        Filename of saved Tensorflow weights
    - saliency: bool, default = False
        Whether to compute and plot the saliency map
    '''
    # read results of best run
    results_file = results_file_base + '.' + results_file_ext
    results_file_dtypes = results_file + '_dtypes'
    # dtypes_series = pd.read_csv('dtype_series', header=None)
    # dtypes_series = dtypes_series.set_index(0).squeeze()
    # dtypes_dict = dtypes_series.to_dict()
    df = pd.read_csv(results_file, header=0, float_precision='high',
                     sep='\t')  # dtype=dtypes_dict
    series = df.iloc[0]
    params = series.to_dict()

    # Get data
    datasets = ['train', 'test', 'score']
    metrics = ['loss', 'acc', 'auroc', 'auroc_sk']
    X, Y = train.get_data(params, datasets)

    # unpack params
    rand_seed = params['rand_seed']
    kernel_reg_const = params['kernel_reg_const']
    num_features = params['num_features']
    q = params['q']

    node_array = params['node_array'].split(',')
    for i in range(len(node_array)):
        node_array[i] = int(node_array[i].strip('[] '))
    node_array = np.array(node_array)

    # rebuild model
    model = models.DNN(num_features, node_array, kernel_reg_const, rand_seed)

    # recreate results dict
    loss, acc, auroc, auroc_sk, y_prob = {}, {}, {}, {}, {}
    for res in [loss, acc, auroc, auroc_sk, y_prob]:
        for dataset in datasets:
            res[dataset] = []

    results = {
        'best_index': 0,
        'loss': loss,
        'acc': acc,
        'auroc': auroc,
        'auroc_sk': auroc_sk,
        'y_prob': y_prob
    }

    # restore graph
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        saver = tf.train.Saver()
        saver.restore(sess, weights_filename)

        # evaluate model on all datasets, including score
        train.evaluate_model(X, Y, model, q, results, datasets, sess)
        for dataset in datasets:
            y_prob = sess.run(model.y_prob, feed_dict={model.x: X[dataset]})
            results['y_prob'][dataset] = y_prob

        # plot ROC curve and save results
        train.plot_ROC(X, Y, results, datasets, results_file_base)
        train.save_results(X, params, results, metrics, datasets,
                           results_file_base)

        # compute and plot saliency map
        if saliency:
            saliency_vecs = train.saliency(X, Y, model, sess)
            train.plot_saliency(saliency_vecs, num_features, results_file_base)
# Model and window configuration
#
# Only run one line in this section!
# ===============================

model, window = model.single_out(dfs, input_steps=25, model_type='lstm')

# model, window = model.multi_out(
#    dfs, input_steps=25, out_steps=25, model_type='lstm')

# Load model history
# model, history = train.load_model('model')

# ==============================
# Training
# ===============================

history = train.compile_and_fit(model, window).history

# train.save_model(model, history, 'model')

# ==============================
# Predictions and Evaluations
# ===============================

train.evaluate_model(model, window, history, verbose=2)

window.plot(model, plot_col='t2m')

predict.predict_plot(model, window, label='t2m')