print("loading CNN_MUI model......") model = model_CNN_MUI.CNN_MUI(args) shutil.copy("./models/model_CNN_MUI.py", "./snapshot/" + mulu) print(model) else: print('\nLoading model from [%s]...' % args.snapshot) try: model = torch.load(args.snapshot) except: print("Sorry, This snapshot doesn't exist.") exit() # train or predict if args.predict is not None: label = train_ALL_CNN.predict(args.predict, model, text_field, label_field) print('\n[Text] {}[Label] {}\n'.format(args.predict, label)) elif args.test: try: print(test_iter) train_ALL_CNN.test_eval(test_iter, model, args) except Exception as e: print("\nSorry. The test dataset doesn't exist.\n") else: print("\n cpu_count \n", mu.cpu_count()) torch.set_num_threads(args.num_threads) if os.path.exists("./Test_Result.txt"): os.remove("./Test_Result.txt") if args.CNN: print("CNN training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, args)
def start_train(model, train_iter, dev_iter, test_iter): """ :function:start train :param model: :param train_iter: :param dev_iter: :param test_iter: :return: """ if config.predict is not None: label = train_ALL_CNN.predict(config.predict, model, config.text_field, config.label_field) print('\n[Text] {}[Label] {}\n'.format(config.predict, label)) elif config.test: try: print(test_iter) train_ALL_CNN.test_eval(test_iter, model, config) except Exception as e: print("\nSorry. The test dataset doesn't exist.\n") else: print("\n cpu_count \n", mu.cpu_count()) torch.set_num_threads(config.num_threads) if os.path.exists("./Test_Result.txt"): os.remove("./Test_Result.txt") if config.CNN: print("CNN training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config) elif config.DEEP_CNN: print("DEEP_CNN training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config) elif config.LSTM: print("LSTM training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.GRU: print("GRU training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.BiLSTM: print("BiLSTM training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.BiLSTM_1: print("BiLSTM_1 training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CNN_LSTM: print("CNN_LSTM training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CLSTM: print("CLSTM training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CBiLSTM: print("CBiLSTM training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CGRU: print("CGRU training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CNN_BiLSTM: print("CNN_BiLSTM training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.BiGRU: print("BiGRU training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CNN_BiGRU: print("CNN_BiGRU training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) elif config.CNN_MUI: print("CNN_MUI training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config) elif config.DEEP_CNN_MUI: print("DEEP_CNN_MUI training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config) elif config.HighWay_CNN is True: print("HighWay_CNN training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config) elif config.HighWay_BiLSTM_1 is True: print("HighWay_BiLSTM_1 training start......") model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config) print("Model_count", model_count) resultlist = [] if os.path.exists("./Test_Result.txt"): file = open("./Test_Result.txt") for line in file.readlines(): if line[:10] == "Evaluation": resultlist.append(float(line[34:41])) result = sorted(resultlist) file.close() file = open("./Test_Result.txt", "a") file.write("\nThe Best Result is : " + str(result[len(result) - 1])) file.write("\n") file.close() shutil.copy("./Test_Result.txt", "./snapshot/" + config.mulu + "/Test_Result.txt")
print("loading HighWay_BiLSTM_1 model......") model = model_HighWay_BiLSTM_1.HighWay_BiLSTM_1(args) shutil.copy("./models/model_HighWay_BiLSTM_1.py", "./snapshot/" + mulu) print(model) else: print('\nLoading model from [%s]...' % args.snapshot) try: model = torch.load(args.snapshot) except: print("Sorry, This snapshot doesn't exist.") exit() # train or predict if args.predict is not None: label = train_ALL_CNN.predict(args.predict, model, text_field, label_field) print('\n[Text] {}[Label] {}\n'.format(args.predict, label)) elif args.test: try: print(test_iter) train_ALL_CNN.test_eval(test_iter, model, args) except Exception as e: print("\nSorry. The test dataset doesn't exist.\n") else: print("\n cpu_count \n", mu.cpu_count()) torch.set_num_threads(args.num_threads) if os.path.exists("./Test_Result.txt"): os.remove("./Test_Result.txt") if args.CNN: print("CNN training start......") model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, args)