# In[13]: gtf.Model(); # In[14]: gtf.Set_Hyperparams(lr=0.0001, val_interval=1, es_min_delta=0.0, es_patience=0) # In[ ]: gtf.Train(num_epochs=30, model_output_dir="trained/"); # In[ ]: # In[2]: # import sys # sys.path.append("Monk_Object_Detection/4_efficientdet/lib/"); # from src.dataset import CocoDataset # root_dir = "coco_dataset_3class";
gtf = Detector() gtf.Train_Dataset(root_dir, coco_dir, img_dir, set_dir, batch_size=system["batch_size"], image_size=system["image_size"], use_gpu=system["use_gpu"]) if (system["val_data"] == "yes"): gtf.Val_Dataset(val_root_dir, val_coco_dir, val_img_dir, val_set_dir) tmp = system["devices"].split(",") gpu_devices = [] for i in range(len(tmp)): gpu_devices.append(int(tmp[i])) gtf.Model(gpu_devices=gpu_devices) gtf.Set_Hyperparams(lr=system["lr"], val_interval=system["val_interval"], es_min_delta=system["es_min_delta"], es_patience=system["es_patience"]) gtf.Train(num_epochs=system["epochs"], model_output_dir=system["output_model_dir"]) print("Completed")
system["val_interval"] = int(system["val_interval"]) system["lr"] = float(system["lr"]) gtf = Detector() gtf.Train_Dataset(root_dir, coco_dir, img_dir, set_dir, batch_size=system["batch_size"], use_gpu=system["use_gpu"]) if (system["val_data"] == "yes"): gtf.Val_Dataset(val_root_dir, val_coco_dir, val_img_dir, val_set_dir) tmp = system["devices"].split(",") gpu_devices = [] for i in range(len(tmp)): gpu_devices.append(int(tmp[i])) gtf.Model(model_name=system["model"], gpu_devices=gpu_devices) gtf.Set_Hyperparams(lr=system["lr"], val_interval=system["val_interval"], print_interval=system["print_interval"]) gtf.Train(num_epochs=system["epochs"], output_model_name=system["output_model_name"] + ".pt") print("Completed")
timg_dir = "images"; tset_dir = "Train"; vroot_dir = "Root_Dir"; vcoco_dir = "Coco_style"; vimg_dir = "images"; vset_dir = "Val"; model.Train_Dataset(troot_dir, tcoco_dir, timg_dir, tset_dir, batch_size=8, image_size=352, use_gpu=True) model.Val_Dataset(vroot_dir, vcoco_dir, vimg_dir, vset_dir) model.Model(model_name="resnet34"); # resnet 50 brought cuda memory error. model.Set_Hyperparams(lr=0.0001, val_interval=1, print_interval=20) model.Train(num_epochs=300,output_model_name="karen_model.pt"); from infer_detector import Infer gtf = Infer(); gtf.Model(model_path="/content/karen_model.pt"); #predictions are quite bad at the moment. class_list=[] with open("/content/Root_Dir/Coco_style/annotations/classes.txt") as file: for line in file: class_list.append(line.rstrip("\n")) class_list=class_list[:-1] img_p="/content/Images_and_Labels/Images/0000002_00005_d_0000014_jpg.rf.555bf2106d899e56d45da0a48295f04c.jpg" scores, labels, boxes = gtf.Predict(img_p, class_list, vis_threshold=0.4); from IPython.display import Image Image(filename='output.jpg')
gtf = Detector(); gtf.Train_Dataset(root_dir, coco_dir, img_dir, set_dir, batch_size=system["batch_size"], num_workers=4) if(system["val_data"] == "yes"): gtf.Val_Dataset(val_root_dir, val_coco_dir, val_img_dir, val_set_dir) gtf.Model(model_name=system["model"]); gtf.Hyper_Params(lr=system["lr"], total_iterations=system["iterations"], val_interval=system["val_interval"]) gtf.Setup(); gtf.Train(display_interval=system["print_interval"]); print("Completed");
val_classes_file = system["val_yolo_classes_file"] from train_detector import Detector gtf = Detector() gtf.set_train_dataset(root_dir + "/" + img_dir, root_dir + "/" + anno_dir, root_dir + "/" + classes_file, batch_size=system["batch_size"], img_size=system["img_size"], cache_images=system["cache_images"]) if (system["val_data"] == "yes"): gtf.set_val_dataset(val_root_dir + "/" + val_img_dir, val_root_dir + "/" + val_anno_dir) gtf.set_model(model_name=system["model"]) gtf.set_hyperparams(optimizer=system["optimizer"], lr=system["lr"], multi_scale=system["multi_scale"], evolve=system["evolve"], num_generations=system["num_generations"], mixed_precision=system["mixed_precision"], gpu_devices=system["devices"]) gtf.Train(num_epochs=system["epochs"]) print("Completed")