def test_resnet_architecture_module_is_used_for_resnet(self, m_custom):
     self.args.model_type = utils.RESNET_ARCHITECTURE
     for supported_mode_type in utils.SUPPORTED_MODEL_MODES:
         self.args.model_mode = supported_mode_type
         if self.args.model_mode not in self.get_unimplemented_modes_for_model_type(
                 self.args.model_type):
             train_model.get_model(self.args, utils.INPUT_SHAPE)
             self.assertTrue(any([m_custom.called]))
 def test_raises_valueError_when_unsupported_model_type_is_given(self):
     unsupported_model_type = 'xx'
     self.args.model_type = unsupported_model_type
     if unsupported_model_type in utils.SUPPORTED_MODEL_TYPES:
         self.fail(
             'Test condition not right: Write the test again with proper unsupported_model_type string'
         )
     with self.assertRaises(ValueError) as ve:
         train_model.get_model(self.args, utils.INPUT_SHAPE)
 def test_valueError_not_raised_when_supported_model_type_is_given(self):
     try:
         for model_type in utils.SUPPORTED_MODEL_TYPES:
             self.args.model_type = model_type
             if self.args.model_mode not in self.get_unimplemented_modes_for_model_type(
                     self.args.model_type):
                 train_model.get_model(self.args, utils.INPUT_SHAPE)
     except ValueError:
         self.fail(
             '{} model architecture should be supported and should not raise error'
             .format(self.args.model_type))
 def test_inceptionv3_architecture_module_is_used_for_inceptionv3(
         self, m_custom, m_finetune, m_baseline):
     self.args.model_type = utils.INCEPTIONV3_ARCHITECTURE
     for supported_mode_type in utils.SUPPORTED_MODEL_MODES:
         self.args.model_mode = supported_mode_type
         if self.args.model_mode not in self.get_unimplemented_modes_for_model_type(
                 self.args.model_type):
             train_model.get_model(self.args, utils.INPUT_SHAPE)
             self.assertTrue(
                 any([
                     m_custom.called, m_baseline.called, m_finetune.called
                 ]))
 def test_valueError_not_raised_when_supported_model_mode_is_given(self):
     try:
         for supported_mode_type in utils.SUPPORTED_MODEL_TYPES:
             self.args.model_type = supported_mode_type
             for model_mode in utils.SUPPORTED_MODEL_MODES:
                 self.args.model_mode = model_mode
                 model_type_unimplemented_exceptions = self.unimplemented_exceptions.get(
                     self.args.model_type)
                 if model_type_unimplemented_exceptions is not None \
                         and self.args.model_mode not in model_type_unimplemented_exceptions:
                     train_model.get_model(self.args, utils.INPUT_SHAPE)
     except ValueError:
         self.fail(
             '{} model architecture should be supported and should not raise error'
             .format(self.args.model_type))
Exemple #6
0
def load_trained_model():
    model = get_model()
    model.load_weights(MODEL_CHECKPOINT_PATH)
    return model
Exemple #7
0
from flask import Blueprint
from flask_restx import Api, fields

from train_model import get_model

api = Api(version='1.0', title='ML API Example', validate=False)
ns = api.namespace('heart', description='Heart disease')
_, model_info = get_model()
feature_row = api.model('featues', {
    feat: fields.Float(required=True)
    for feat in model_info['required_cols']
})

information = api.model(
    'model information', {
        'model_name': fields.String(required=True),
        'f1-score': fields.Float(required=True),
        'required_cols': fields.List(fields.String())
    })

prediction = api.model('prediction', {'prediction': fields.Integer()})

api_blueprint = Blueprint('api', __name__)