no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.0}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=2e-5, eps=1e-8) crit = torch.nn.CrossEntropyLoss() trainer = Train(model_name=model_name, train_loader=train_loader, val_loader=val_loader, test_loader=test_loader, model=model, optimizer=optimizer, loss_fn=crit, epochs=12, print_step=1, early_stop_patience=3, # save_model_path=f"./save_model/{params['model_name']}", save_model_path=f"/sdd/yujunshuai/save_model/{model_name}", save_model_every_epoch=False, metric=accuracy_score, num_class=2, # tensorboard_path='./tensorboard_log') tensorboard_path='/sdd/yujunshuai/tensorboard_log') print(trainer.train()) print(trainer.test())
'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr, eps=1e-8) trainer = Train( model_name=args.model_name, train_loader=train_loader, test_loader=test_loader, device=args.device, model=model, optimizer=optimizer, epochs=args.epochs, print_step=1, early_stop_patience=args.early_stop_patience, save_model_path=f"./experiments/save_model/{args.model_name}", save_model_every_epoch=False, metric=accuracy_score, num_class=2, tensorboard_path=f'./experiments/tensorboard_log/{args.model_name}') if args.test and args.best_model_path: print( trainer.test(test_loader, './data/processed_modified_test_data.json', './data/processed_modified_test_data_result.json', args.best_model_path)) else: print(trainer.train())
optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.0}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=2e-5, eps=1e-8) crit = torch.nn.CrossEntropyLoss() trainer = Train(model_name='weibo_bert_cat', train_loader=train_loader, val_loader=val_loader, test_loader=test_loader, model=model, optimizer=optimizer, loss_fn=crit, epochs=10, print_step=1, early_stop_patience=3, # save_model_path=f"./save_model/{params['model_name']}", save_model_path=f"/sdd/yujunshuai/save_model/weibo_bert_cat", save_model_every_epoch=False, metric=accuracy_score, num_class=2, # tensorboard_path='./tensorboard_log') tensorboard_path='/sdd/yujunshuai/tensorboard_log') trainer.train() trainer.test()