def get_ground_truth(self, meta, mask_miss):

        stride = self.params_transform['stride']
        mode = self.params_transform['mode']
        crop_size_y = self.params_transform['crop_size_y']
        crop_size_x = self.params_transform['crop_size_x']
        num_parts = self.params_transform['np']
        nop = meta['numOtherPeople']
        grid_y = crop_size_y / stride
        grid_x = crop_size_x / stride
        channels = (num_parts + 1) * 2
        heatmaps = np.zeros((int(grid_y), int(grid_x), 19))
        pafs = np.zeros((int(grid_y), int(grid_x), 38))

        mask_miss = cv2.resize(mask_miss, (0, 0),
                               fx=1.0 / stride,
                               fy=1.0 / stride,
                               interpolation=cv2.INTER_CUBIC).astype(
                                   np.float32)
        mask_miss = mask_miss / 255.
        mask_miss = np.expand_dims(mask_miss, axis=2)

        heat_mask = np.repeat(mask_miss, 19, axis=2)
        paf_mask = np.repeat(mask_miss, 38, axis=2)

        # confidance maps for body parts
        for i in range(18):
            if (meta['joint_self'][i, 2] <= 1):
                center = meta['joint_self'][i, :2]
                gaussian_map = heatmaps[:, :, i]
                heatmaps[:, :, i] = putGaussianMaps(
                    center,
                    gaussian_map,
                    params_transform=self.params_transform)
            for j in range(nop):
                if (meta['joint_others'][j, i, 2] <= 1):
                    center = meta['joint_others'][j, i, :2]
                    gaussian_map = heatmaps[:, :, i]
                    heatmaps[:, :, i] = putGaussianMaps(
                        center,
                        gaussian_map,
                        params_transform=self.params_transform)
        # pafs
        mid_1 = [2, 9, 10, 2, 12, 13, 2, 3, 4, 3, 2, 6, 7, 6, 2, 1, 1, 15, 16]

        mid_2 = [
            9, 10, 11, 12, 13, 14, 3, 4, 5, 17, 6, 7, 8, 18, 1, 15, 16, 17, 18
        ]

        thre = 1
        for i in range(19):
            # limb

            count = np.zeros((int(grid_y), int(grid_x)), dtype=np.uint32)
            if (meta['joint_self'][mid_1[i] - 1, 2] <= 1
                    and meta['joint_self'][mid_2[i] - 1, 2] <= 1):
                centerA = meta['joint_self'][mid_1[i] - 1, :2]
                centerB = meta['joint_self'][mid_2[i] - 1, :2]
                vec_map = pafs[:, :, 2 * i:2 * i + 2]
                #                    print vec_map.shape
                pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(
                    centerA=centerA,
                    centerB=centerB,
                    accumulate_vec_map=vec_map,
                    count=count,
                    params_transform=self.params_transform)
            for j in range(nop):
                if (meta['joint_others'][j, mid_1[i] - 1, 2] <= 1
                        and meta['joint_others'][j, mid_2[i] - 1, 2] <= 1):
                    centerA = meta['joint_others'][j, mid_1[i] - 1, :2]
                    centerB = meta['joint_others'][j, mid_2[i] - 1, :2]
                    vec_map = pafs[:, :, 2 * i:2 * i + 2]
                    pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(
                        centerA=centerA,
                        centerB=centerB,
                        accumulate_vec_map=vec_map,
                        count=count,
                        params_transform=self.params_transform)
        # background
        heatmaps[:, :,
                 -1] = np.maximum(1 - np.max(heatmaps[:, :, :18], axis=2), 0.)

        return heat_mask, heatmaps, paf_mask, pafs
Exemple #2
0
    def get_ground_truth(self, meta, mask_miss):

        stride = self.params_transform['stride']
        crop_size_y = self.params_transform['crop_size_y']
        crop_size_x = self.params_transform['crop_size_x']
        nop = meta['numOtherPeople']
        grid_y = crop_size_y / stride
        grid_x = crop_size_x / stride
        heatmaps = np.zeros((int(grid_y), int(grid_x), 16))
        pafs = np.zeros((int(grid_y), int(grid_x), 32))

        mask_miss = cv2.resize(mask_miss, (0, 0),
                               fx=1.0 / stride,
                               fy=1.0 / stride,
                               interpolation=cv2.INTER_CUBIC).astype(
                                   np.float32)
        mask_miss = mask_miss / 255.
        mask_miss = np.expand_dims(mask_miss, axis=2)

        heat_mask = np.repeat(mask_miss, 16, axis=2)
        paf_mask = np.repeat(mask_miss, 32, axis=2)
        '''
         id (0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee,
             5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck, 9 - head top,
             10 - r wrist, 11 - r elbow, 12 - r shoulder, 13 - l shoulder,
             14 - l elbow, 15 - l wrist)
        '''
        # now 6 is the center of person, and thorax was eliminated.
        ran = [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
        for i in range(15):
            # the first person'
            index = ran[i]
            if (meta['joint_self'][index, 2] <= 1):
                center = meta['joint_self'][index, :2]
                gaussian_map = heatmaps[:, :, i]
                heatmaps[:, :, i] = putGaussianMaps(
                    center,
                    gaussian_map,
                    params_transform=self.params_transform)
            # the other people in the image
            for j in range(nop):
                if (meta['joint_others'][j, index, 2] <= 1):
                    center = meta['joint_others'][j, index, :2]
                    gaussian_map = heatmaps[:, :, i]
                    heatmaps[:, :, i] = putGaussianMaps(
                        center,
                        gaussian_map,
                        params_transform=self.params_transform)

        mid_1 = [8, 8, 6, 3, 4, 6, 2, 1, 8, 13, 14, 8, 12, 11, 12, 13]

        mid_2 = [9, 6, 3, 4, 5, 2, 1, 0, 13, 14, 15, 12, 11, 10, 9, 9]

        for i in range(16):
            count = np.zeros((int(grid_y), int(grid_x)), dtype=np.uint32)
            if (meta['joint_self'][mid_1[i], 2] <= 1
                    and meta['joint_self'][mid_2[i], 2] <= 1):
                centerA = meta['joint_self'][mid_1[i], :2]
                centerB = meta['joint_self'][mid_2[i], :2]
                vec_map = pafs[:, :, 2 * i:2 * i + 2]
                pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(
                    centerA=centerA,
                    centerB=centerB,
                    accumulate_vec_map=vec_map,
                    count=count,
                    params_transform=self.params_transform)
            for j in range(nop):
                if (meta['joint_others'][j, mid_1[i], 2] <= 1
                        and meta['joint_others'][j, mid_2[i], 2] <= 1):
                    centerA = meta['joint_others'][j, mid_1[i], :2]
                    centerB = meta['joint_others'][j, mid_2[i], :2]
                    vec_map = pafs[:, :, 2 * i:2 * i + 2]
                    pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(
                        centerA=centerA,
                        centerB=centerB,
                        accumulate_vec_map=vec_map,
                        count=count,
                        params_transform=self.params_transform)
        # background
        heatmaps[:, :,
                 -1] = np.maximum(1 - np.max(heatmaps[:, :, :14], axis=2), 0.)

        return heat_mask, heatmaps, paf_mask, pafs
Exemple #3
0
    def get_ground_truth(self, meta, mask_miss):

        stride = self.params_transform['stride']
        mode = self.params_transform['mode']
        crop_size_y = self.params_transform['crop_size_y']
        crop_size_x = self.params_transform['crop_size_x']
        num_parts = self.params_transform['np']
        nop = meta['numOtherPeople']
        grid_y = crop_size_y / stride
        grid_x = crop_size_x / stride
        channels = (num_parts + 1) * 2
        heatmaps = np.zeros((int(grid_y), int(grid_x), 19))
        pafs = np.zeros((int(grid_y), int(grid_x), 38))

        mask_miss = cv2.resize(mask_miss, (0, 0),
                               fx=1.0 / stride,
                               fy=1.0 / stride,
                               interpolation=cv2.INTER_CUBIC).astype(
                                   np.float32)
        mask_miss = mask_miss / 255.
        mask_miss = np.expand_dims(mask_miss, axis=2)

        heat_mask = np.repeat(mask_miss, 19, axis=2)
        paf_mask = np.repeat(mask_miss, 38, axis=2)
        # print(meta['joint_self'])
        # print(meta['joint_self'][0, 2])
        # print(meta['joint_self'][0, 0, 2])
        # confidance maps for body parts
        for i in range(18):
            # the first person
            if (meta['joint_self'][i, 2] <= 1):
                center = meta['joint_self'][i, :2]
                gaussian_map = heatmaps[:, :, i]
                heatmaps[:, :, i] = putGaussianMaps(
                    center,
                    gaussian_map,
                    params_transform=self.params_transform)
            # the other people in the image
            for j in range(nop):
                # print(meta['joint_others'])
                # print(meta['joint_others'][j, i, 2] <= 1)
                if (meta['joint_others'][j, i, 2] <= 1):
                    center = meta['joint_others'][j, i, :2]
                    gaussian_map = heatmaps[:, :, i]
                    heatmaps[:, :, i] = putGaussianMaps(
                        center,
                        gaussian_map,
                        params_transform=self.params_transform)
        '''
                MS COCO annotation order:
                0: nose	   		1: l eye		2: r eye	3: l ear	4: r ear
                5: l shoulder	6: r shoulder	7: l elbow	8: r elbow
                9: l wrist		10: r wrist		11: l hip	12: r hip	13: l knee
                14: r knee		15: l ankle		16: r ankle

                The order in this work:
                (0-'nose'	1-'neck' 2-'right_shoulder' 3-'right_elbow' 4-'right_wrist'
                5-'left_shoulder' 6-'left_elbow'	    7-'left_wrist'  8-'right_hip'
                9-'right_knee'	 10-'right_ankle'	11-'left_hip'   12-'left_knee'
                13-'left_ankle'	 14-'right_eye'	    15-'left_eye'   16-'right_ear'
                17-'left_ear' )
                '''
        # pafs
        # neck-r_shoulder neck-l_shoulder r_shoulder-r_elbow r_elbow-r_wrist l_shoulder-l_elbow l_elbow-l_wrist
        # neck-r_hip r_hip-r_knee r_knee-r_ankle neck-l_hip l_hip-l_knee l_knee-l_ankle neck-nose nose-r_eye r_eye-r_ear
        # nose-l_eye l_eye-l_ear
        mid_1 = [2, 9, 10, 2, 12, 13, 2, 3, 4, 3, 2, 6, 7, 6, 2, 1, 1, 15, 16]

        mid_2 = [
            9, 10, 11, 12, 13, 14, 3, 4, 5, 17, 6, 7, 8, 18, 1, 15, 16, 17, 18
        ]

        thre = 1
        for i in range(19):
            # limb

            count = np.zeros((int(grid_y), int(grid_x)), dtype=np.uint32)
            if (meta['joint_self'][mid_1[i] - 1, 2] <= 1
                    and meta['joint_self'][mid_2[i] - 1, 2] <= 1):
                centerA = meta['joint_self'][mid_1[i] - 1, :2]
                centerB = meta['joint_self'][mid_2[i] - 1, :2]
                vec_map = pafs[:, :, 2 * i:2 * i + 2]
                #                    print vec_map.shape
                pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(
                    centerA=centerA,
                    centerB=centerB,
                    accumulate_vec_map=vec_map,
                    count=count,
                    params_transform=self.params_transform)
            for j in range(nop):
                if (meta['joint_others'][j, mid_1[i] - 1, 2] <= 1
                        and meta['joint_others'][j, mid_2[i] - 1, 2] <= 1):
                    centerA = meta['joint_others'][j, mid_1[i] - 1, :2]
                    centerB = meta['joint_others'][j, mid_2[i] - 1, :2]
                    vec_map = pafs[:, :, 2 * i:2 * i + 2]
                    pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(
                        centerA=centerA,
                        centerB=centerB,
                        accumulate_vec_map=vec_map,
                        count=count,
                        params_transform=self.params_transform)
        # background
        heatmaps[:, :,
                 -1] = np.maximum(1 - np.max(heatmaps[:, :, :18], axis=2), 0.)

        return heat_mask, heatmaps, paf_mask, pafs