Exemple #1
0
    def train(self, epoch=10, batch_size=32, gpu=False):
        if gpu:
            cuda.check_cuda_available()
        xp = cuda.cupy if gpu else np

        self.batch_size = batch_size

        label_types = ['none', 'tap', 'up', 'down', 'right', 'left']

        self.model = Alex(len(label_types))
        optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
        optimizer.setup(self.model)

        if gpu:
            self.model.to_gpu()

        training_data = TrainingData(IMAGE_ROOT, NOTE_ROOT, VIDEO_ROOT, SONG_LIST_PATH)
        self.x_train, self.x_test, self.y_train, self.y_test = training_data.get_train_data(label_types)
        data_size = self.x_train.shape[0]

        for ep in range(epoch):
            print('epoch {0}/{1}: (learning rate={2})'.format(ep + 1, epoch, optimizer.lr))
            indexes = np.random.permutation(data_size)
            for i in range(0, data_size, self.batch_size):
                x_batch = self.x_train[indexes[i:i + self.batch_size]]
                y_batch = self.y_train[indexes[i:i + self.batch_size]]
                x = chainer.Variable(x_batch)
                t = chainer.Variable(y_batch)
                optimizer.update(self.model, x, t)
                print("loss: {0}".format(self.model.loss.data))

            serializers.save_npz(MODEL_PATH, self.model)
            optimizer.lr *= 0.97
Exemple #2
0
def create_engine(db_path: str, training_data_path: str):
    db = NeuralNetworkDB()
    db.open(db_path)

    config = Config(db)

    training_data = TrainingData(db)
    training_data.load_file(training_data_path)

    # engine.neural_network_loader = NeuralNetworkLoader(engine)
    #
    engine = Engine()
    engine._db = db
    engine._config = config
    engine._training_data = training_data

    Engine._instance = engine

    engine._conductor = Conductor()
    engine._evolution_processor = EvolutionProcessor()
    def calculate_sales_probality_per_offer(self):
        probability_per_offer = []

        for joined_market_situations in self.testing_data.joined_data.values():
            for jms in joined_market_situations.values():
                if self.settings["initial_merchant_id"] in jms.merchants:
                    for offer_id in jms.merchants[self.settings["initial_merchant_id"]].keys():
                        features_ps = extract_features(offer_id, TrainingData.create_offer_list(jms), False, self.testing_data.product_prices)
                        probability = self.ml_engine.predict(jms.merchants[self.settings["initial_merchant_id"]][offer_id].product_id, [features_ps])
                        probability_per_offer.append((int(offer_id), probability[0]))
        write_calculations_to_file(probability_per_offer, self.settings['output_file'])
class CrossValidator:
    def __init__(self, settings: dict, ml_engine: MlEngine):
        self.settings = settings
        self.ml_engine = ml_engine
        self.testing_data = TestingData()
        self.training_data = TrainingData(self.settings['merchant_token'], self.settings['merchant_id'])

    def cross_validation(self):
        logging.debug('Creating training set')
        self.create_training_data()
        logging.debug('Creating testing set')
        self.create_testing_data()
        logging.debug('Perform learning')
        self.perform_learning()
        logging.debug('Calculate probabilties per offer and write them to disk')
        self.calculate_sales_probality_per_offer()
        logging.debug('Finished!')

    def create_training_data(self):
        self.training_data.append_by_csvs(self.settings['market_situation_csv_path'],
                                          self.settings['buy_offer_csv_path'],
                                          self.settings["initial_merchant_id"])

    def create_testing_data(self):
        self.testing_data.append_by_csvs(self.settings['testing_set_csv_path'],
                                         self.settings['initial_merchant_id'])

    def perform_learning(self):
        self.ml_engine.train_model(self.training_data.convert_training_data())

    def calculate_sales_probality_per_offer(self):
        probability_per_offer = []

        for joined_market_situations in self.testing_data.joined_data.values():
            for jms in joined_market_situations.values():
                if self.settings["initial_merchant_id"] in jms.merchants:
                    for offer_id in jms.merchants[self.settings["initial_merchant_id"]].keys():
                        features_ps = extract_features(offer_id, TrainingData.create_offer_list(jms), False, self.testing_data.product_prices)
                        probability = self.ml_engine.predict(jms.merchants[self.settings["initial_merchant_id"]][offer_id].product_id, [features_ps])
                        probability_per_offer.append((int(offer_id), probability[0]))
        write_calculations_to_file(probability_per_offer, self.settings['output_file'])
Exemple #5
0
def load_data(resource_name, language='en'):
    # type: (Text, Optional[Text]) -> TrainingData
    """Load training data from disk.

    Merges them if loaded from disk and multiple files are found."""

    files = utils.list_files(resource_name)
    data_sets = [_load(f, language) for f in files]
    data_sets = [ds for ds in data_sets if ds]
    if len(data_sets) == 0:
        return TrainingData()
    elif len(data_sets) == 1:
        return data_sets[0]
    else:
        return data_sets[0].merge(*data_sets[1:])
def main():
    # Analyze the dataset paths
    print 'Loading datasets...'
    ds_train_samples = DataSet(TRAINING_SAMPLES_PATH)
    ds_train_gt = DataSet(GROUND_TRUTH_PATH)
    print 'Loading data generation parameters...'
    data = TrainingData(ds_train_samples, ds_train_gt)
    # Load the data format parameters or use the default ones
    try:
        data.load_config_file(DATA_FORMAT_CONFIG_PATH)
    except IOError:
        data.config['patch_size'] = DEFAULT_PATCH_SIZE
        try:
            data.save_config_file(DATA_FORMAT_CONFIG_PATH)
        except IOError:
            print 'Cannot load data format parameters.'
    # Load the data generation parameters or use the default ones
    try:
        genconf = data.load_gen_config(DATA_GENERATION_CONFIG_PATH)
    except IOError:
        genconf = data.random_gen_config(DEFAULT_PATCHES_PER_IMG)
        try:
            data.save_gen_config(DATA_GENERATION_CONFIG_PATH, genconf)
        except IOError:
            print 'Cannot save generation parameters.'
    # Generate the data itself
    print 'Generating data...'
    samples_data = data.generate_input_data(genconf)
    gt_data = data.generate_ground_truth_data(genconf)
    print samples_data.shape[0], 'training samples were generated.'
Exemple #7
0
import os
import sys
sys.path.append('./src')
sys.path.append('./src/lib')
from training_data import TrainingData

csv_training_data = os.path.join('csv', 'training_data.csv')
dirname = './json'

training_data = TrainingData(csv_training_data)
training_data.export(dirname)
print("--- Successfully exported JSON training data under {}/ ---".format(
    dirname))
 def arrange(self):
     self.ml_testengine.product_model_dict['1'] = ''
     training_data = TrainingData('', '')
     training_data.product_prices = {'1': 10.0}
     self.tested.training_data = training_data
 def __init__(self, settings: dict, ml_engine: MlEngine):
     self.settings = settings
     self.ml_engine = ml_engine
     self.testing_data = TestingData()
     self.training_data = TrainingData(self.settings['merchant_token'], self.settings['merchant_id'])
        params['contributions'] = [dG0_rc, dG0_gc]
        params['covariances']   = [V_rc, V_gc, V_inf]
        params['MSEs']          = [MSE_rc, MSE_gc, MSE_inf]
        params['projections']   = [P_R_rc,
                                   P_R_gc * G.T * P_N_rc,
                                   P_N_gc * G.T * P_N_rc,
                                   P_R_gc,
                                   P_N_rc,
                                   P_N_gc]
        params['inverses']      = [inv_S, inv_GS, inv_SWS, inv_GSWGS]

        # Calculate the total of the contributions and covariances
        cov_dG0 = V_rc * MSE_rc + V_gc * MSE_gc + V_inf * MSE_inf
        
        return dG0_cc, cov_dG0, params

if __name__ == '__main__':
    from kegg_model import KeggModel
    
    reaction_strings = sys.stdin.readlines()
    td = TrainingData()
    cc = ComponentContribution(td)
    model = KeggModel.from_formulas(reaction_strings)
    model_dG0, model_cov_dG0 = cc.estimate_kegg_model(model)
    
    model_dG0_prime = model_dG0 + model.get_transform_ddG0(pH=7.5, I=0.2, T=298.15)
    
    sys.stdout.write('[' + 
                     ', '.join([str(x) for x in model_dG0.flat]) + '; ' + 
                     ', '.join([str(x) for x in model_dG0_prime.flat]) + 
                     ']')    
def load_image(image_path):
    root = os.path.basename(image_path)
    return TrainingData(image_path,
                        measures=measurements,
                        kind="good" if root.find('good') != -1 else "bad",
                        compare=False)
#import matplotlib.pyplot as plt
measurements = (
    contrast,
    noise,
    blur,
    composition,
    #faces, # => under composition
)
max_size = (640, 480
            )  # set to None to use original image sizes (can take awhile!)

# good - bad_qualities = possible bad qualities that might be marked
california_night = TrainingData(
    'good/Another Beautiful California Night.jpg',
    measures=measurements,
    kind='good',
)
bnw_horse = TrainingData(
    'good/AP McCoy Black & White Horse Racing Photo.jpg',
    measures=measurements,
    kind='good',  #bad_qualities=['grayscale'],
)
dreamer = TrainingData(
    'good/Beautiful Dreamer, Awake Unto Me.jpg',
    measures=measurements,
    kind='good',  # bad_qualities=['composition']
)
tiger = TrainingData(
    'good/Beautiful Face.jpg',
    measures=measurements,
Exemple #13
0
def main():
    training_data = TrainingData(IMAGE_ROOT, NOTE_ROOT, VIDEO_ROOT, SONG_LIST_PATH)
    x_train, x_test, y_train, y_test = training_data.get_train_data(['none', 'tap', 'up', 'down', 'right', 'left'])
# coding=utf-8

from training_data import TrainingData

import json
from random import Random

td = TrainingData(json_str="""
{
    "training_set_name": "add",
    "inputs": ["input_01", "input_02"],
    "outputs": ["add"],
    "combo_set_ratio": 0.8,
    "combo_set": [],
    "training_set": [],
    "testing_set": []
}
""")

r = Random()

def get_datum():
    while True:
        a = r.uniform(0, 10)
        b = r.uniform(0, 10)
        yield {"in": [a, b], "out": [a+b]}

datum_it = get_datum()

for i in range(1000):
    td._training_set.append(datum_it.__next__())