def train_model(): # Setup session sess = tu.setup_training_session() ########## # Innputs ########## # Setup async input queue of real images X_real = du.read_celebA() # Noise batch_size = tf.shape(X_real)[0] z_noise_for_D = tf.random_uniform((batch_size, FLAGS.z_dim,), minval=-1, maxval=1, name="z_input_D") z_noise_for_G = tf.random_uniform((batch_size, FLAGS.z_dim,), minval=-1, maxval=1, name="z_input_G") # k factor k_factor = tf.Variable(initial_value=0., trainable=False, name='anneal_factor') # learning rate lr = tf.Variable(initial_value=FLAGS.learning_rate, trainable=False, name='learning_rate') ######################## # Instantiate models ######################## G = models.Generator(nb_filters=FLAGS.nb_filters_G) D = models.Discriminator(h_dim=FLAGS.h_dim, nb_filters=FLAGS.nb_filters_D) ########## # Outputs ########## X_rec_real = D(X_real, output_name="X_rec_real") X_fake_for_D = G(z_noise_for_D, output_name="X_fake_for_D") X_rec_fake_for_D = D(X_fake_for_D, reuse=True, output_name="X_rec_fake_for_D") X_fake_for_G = G(z_noise_for_G, reuse=True, output_name="X_fake_for_G") X_rec_fake_for_G = D(X_fake_for_G, reuse=True, output_name="X_rec_fake_for_G") # output images for plots real_toplot = du.unnormalize_image(X_real, name="real_toplot") generated_toplot = du.unnormalize_image(X_fake_for_G, name="generated_toplot") real_rec_toplot = du.unnormalize_image(X_rec_real, name="rec_toplot") generated_rec_toplot = du.unnormalize_image(X_rec_fake_for_G, name="generated_rec_toplot") ########################### # Instantiate optimizers ########################### opt = tf.train.AdamOptimizer(learning_rate=lr, name='opt') ########################### # losses ########################### loss_real = losses.mae(X_real, X_rec_real) loss_fake_for_D = losses.mae(X_fake_for_D, X_rec_fake_for_D) loss_fake_for_G = losses.mae(X_fake_for_G, X_rec_fake_for_G) L_D = loss_real - k_factor * loss_fake_for_D L_G = loss_fake_for_G Convergence = loss_real + tf.abs(FLAGS.gamma * loss_real - loss_fake_for_G) ########################### # Compute updates ops ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = opt.compute_gradients(L_G, var_list=G_vars) G_update = opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = opt.compute_gradients(L_D, var_list=D_vars) D_update = opt.apply_gradients(D_gradvar, name='D_loss_minimize') update_k_factor = tf.assign(k_factor, k_factor + FLAGS.lambdak * (FLAGS.gamma * loss_real - loss_fake_for_G)) update_lr = tf.assign(lr, tf.maximum(1E-6, lr / 2)) ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries for G tf.summary.scalar("G loss", L_G) # Add scalar symmaries for D tf.summary.scalar("D loss", L_D) # Add scalar symmaries for D tf.summary.scalar("k_factor", k_factor) tf.summary.scalar("Convergence", Convergence) tf.summary.scalar("learning rate", lr) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord, threads = du.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) # Run checks on data dimensions list_data = [z_noise_for_D, z_noise_for_G] list_data += [X_real, X_rec_real, X_fake_for_G, X_rec_fake_for_G, X_fake_for_D, X_rec_fake_for_D] list_data += [generated_toplot, real_toplot] output = sess.run(list_data) tu.check_data(output, list_data) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): # Anneal learning rate if (e + 1) % 200 == 0: sess.run([update_lr]) t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: output = sess.run([G_update, D_update, update_k_factor]) if batch_counter % (FLAGS.nb_batch_per_epoch // (int(0.5 * FLAGS.nb_batch_per_epoch))) == 0: output = sess.run([summary_op]) writer.add_summary(output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %s:' % e) # Plot some generated images Xf, Xr, Xrrec, Xfrec = sess.run([generated_toplot, real_toplot, real_rec_toplot, generated_rec_toplot]) vu.save_image(Xf, Xr, title="current_batch", e=e) vu.save_image(Xrrec, Xfrec, title="reconstruction", e=e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) # Show data statistics output = sess.run(list_data) tu.check_data(output, list_data) # Stop threads coord.request_stop() coord.join(threads) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Placeholder for data and Mnist iterator mnist = input_data.read_data_sets(FLAGS.raw_dir, one_hot=True) # images = tf.constant(mnist.train.images) if FLAGS.data_format == "NHWC": X_real = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, 28, 28, 1]) else: X_real = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, 1, 28, 28]) with tf.device('/cpu:0'): imgs = mnist.train.images.astype(np.float32) npts = imgs.shape[0] if FLAGS.data_format == "NHWC": imgs = imgs.reshape((npts, 28, 28, 1)) else: imgs = imgs.reshape((npts, 1, 28, 28)) imgs = (imgs - 0.5) / 0.5 # input_images = tf.constant(imgs) # image = tf.train.slice_input_producer([input_images], num_epochs=FLAGS.nb_epoch) # X_real = tf.train.batch(image, batch_size=FLAGS.batch_size, num_threads=8) ####################### # Instantiate generator ####################### list_filters = [256, 1] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, dset="mnist", data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='G_opt', beta1=0.5) D_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='D_opt', beta1=0.5) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1) noise_input = tf.random_uniform((FLAGS.batch_size, FLAGS.noise_dim,), minval=-1, maxval=1) X_fake = G(noise_input) # output images X_G_output = du.unnormalize_image(X_fake) X_real_output = du.unnormalize_image(X_real) D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = objectives.binary_cross_entropy_with_logits(D_fake, tf.ones_like(D_fake)) D_loss_real = objectives.binary_cross_entropy_with_logits(D_real, tf.ones_like(D_real)) D_loss_fake = objectives.binary_cross_entropy_with_logits(D_fake, tf.zeros_like(D_fake)) D_loss = D_loss_real + D_loss_fake # ###################################################################### # # Some parameters need to be updated (e.g. BN moving average/variance) # ###################################################################### # from tensorflow.python.ops import control_flow_ops # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # with tf.control_dependencies(update_ops): # barrier = tf.no_op(name='update_barrier') # D_loss = control_flow_ops.with_dependencies([barrier], D_loss) # G_loss = control_flow_ops.with_dependencies([barrier], G_loss) ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') ########################## # Group training ops ########################## train_ops = [G_update, D_update] loss_ops = [G_loss, D_loss, D_loss_real, D_loss_fake] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss real", D_loss_real) tf.summary.scalar("D loss fake", D_loss_fake) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord = tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) for e in tqdm(range(FLAGS.nb_epoch), desc="\nTraining progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: # X_batch, _ = mnist.train.next_batch(FLAGS.batch_size) # if FLAGS.data_format == "NHWC": # X_batch = np.reshape(X_batch, [-1, 28, 28, 1]) # else: # X_batch = np.reshape(X_batch, [-1, 1, 28, 28]) # X_batch = (X_batch - 0.5) / 0.5 X_batch = du.sample_batch(imgs, FLAGS.batch_size) output = sess.run(train_ops + loss_ops + [summary_op], feed_dict={X_real: X_batch}) if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary(output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) lossG, lossDreal, lossDfake = [output[2], output[4], output[5]] t.set_description('Epoch %i: - G loss: %.2f D loss real: %.2f Dloss fake: %.2f' % (e, lossG, lossDreal, lossDfake)) # variables = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)] # bmean = [v for v in variables if v.name == "generator/conv2D_1_1/BatchNorm/moving_mean:0"] # print sess.run(bmean) # raw_input() # Plot some generated images # output = sess.run([X_G_output, X_real_output]) output = sess.run([X_G_output, X_real_output], feed_dict={X_real: X_batch}) vu.save_image(output, FLAGS.data_format, e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_training_session() # Setup async input queue of real images X_real16, X_real32, X_real64 = du.read_celebA() ####################### # Instantiate generators ####################### G16 = models.G16() G32 = models.G32() G64 = models.G64() ########################### # Instantiate discriminators ########################### D16 = models.D16() D32 = models.D32() D64 = models.D64() ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='G_opt', beta1=0.5) D_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='D_opt', beta1=0.5) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1) noise_input = tf.random_uniform(( FLAGS.batch_size, FLAGS.noise_dim, ), minval=-1, maxval=1) X_fake16 = G16(noise_input) D16_real = D16(X_real16, mode="D") X_feat16, D16_fake = D16(X_fake16, reuse=True, mode="G") X_fake32 = G32(X_fake16, X_feat16) D32_real = D32(X_real32, mode="D") X_feat32, D32_fake = D32(X_fake32, reuse=True, mode="G") X_fake64 = G64(X_fake32, X_feat32) D64_real = D64(X_real64) D64_fake = D64(X_fake64, reuse=True) # output images X_fake16_output = du.unnormalize_image(X_fake16) X_real16_output = du.unnormalize_image(X_real16) X_fake32_output = du.unnormalize_image(X_fake32) X_real32_output = du.unnormalize_image(X_real32) X_fake64_output = du.unnormalize_image(X_fake64) X_real64_output = du.unnormalize_image(X_real64) ########################### # Instantiate losses ########################### G16_loss = objectives.binary_cross_entropy_with_logits( D16_fake, tf.ones_like(D16_fake)) G32_loss = objectives.binary_cross_entropy_with_logits( D32_fake, tf.ones_like(D32_fake)) G64_loss = objectives.binary_cross_entropy_with_logits( D64_fake, tf.ones_like(D64_fake)) G_loss = G16_loss + G32_loss + G64_loss # Fake losses D16_loss_fake = objectives.binary_cross_entropy_with_logits( D16_fake, tf.zeros_like(D16_fake)) D32_loss_fake = objectives.binary_cross_entropy_with_logits( D32_fake, tf.zeros_like(D32_fake)) D64_loss_fake = objectives.binary_cross_entropy_with_logits( D64_fake, tf.zeros_like(D64_fake)) # Real losses D16_loss_real = objectives.binary_cross_entropy_with_logits( D16_real, tf.ones_like(D16_real)) D32_loss_real = objectives.binary_cross_entropy_with_logits( D32_real, tf.ones_like(D32_real)) D64_loss_real = objectives.binary_cross_entropy_with_logits( D64_real, tf.ones_like(D64_real)) D_loss = D16_loss_real + D32_loss_real + D64_loss_real D_loss += D16_loss_fake + D32_loss_fake + D64_loss_fake ########################### # Compute gradient updates ########################### dict_G16_vars = G16.get_trainable_variables() G16_vars = [dict_G16_vars[k] for k in dict_G16_vars.keys()] dict_G32_vars = G32.get_trainable_variables() G32_vars = [dict_G32_vars[k] for k in dict_G32_vars.keys()] dict_G64_vars = G64.get_trainable_variables() G64_vars = [dict_G64_vars[k] for k in dict_G64_vars.keys()] G_vars = G16_vars + G32_vars + G64_vars dict_D16_vars = D16.get_trainable_variables() D16_vars = [dict_D16_vars[k] for k in dict_D16_vars.keys()] dict_D32_vars = D32.get_trainable_variables() D32_vars = [dict_D32_vars[k] for k in dict_D32_vars.keys()] dict_D64_vars = D64.get_trainable_variables() D64_vars = [dict_D64_vars[k] for k in dict_D64_vars.keys()] D_vars = D16_vars + D32_vars + D64_vars G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars, colocate_gradients_with_ops=True) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars, colocate_gradients_with_ops=True) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G16 loss", G16_loss) tf.summary.scalar("G32 loss", G32_loss) tf.summary.scalar("G64 loss", G64_loss) # Real losses tf.summary.scalar("D16 loss real", D16_loss_real) tf.summary.scalar("D32 loss real", D32_loss_real) tf.summary.scalar("D64 loss real", D64_loss_real) # Fake losses tf.summary.scalar("D16 loss fake", D16_loss_fake) tf.summary.scalar("D32 loss fake", D32_loss_fake) tf.summary.scalar("D64 loss fake", D64_loss_fake) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues du.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) # Run checks on data dimensions list_data = [noise_input] list_data += [X_fake16, X_fake32, X_fake64] list_data += [X_fake16_output, X_fake32_output, X_fake64_output] output = sess.run(list_data) tu.check_data(output, list_data) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: # Update D output = sess.run([D_update]) # Update G output = sess.run([G_update]) if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: output = sess.run([summary_op]) writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %i:' % e) # Plot some generated images output = sess.run([ X_fake16_output, X_real16_output, X_fake32_output, X_real32_output, X_fake64_output, X_real64_output, ]) vu.save_image(output[:2], e=e, title="size_16") vu.save_image(output[2:4], e=e, title="size_32") vu.save_image(output[4:6], e=e, title="size_64") # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) # Show data statistics output = sess.run(list_data) tu.check_data(output, list_data) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Placeholder for data and Mnist iterator mnist = input_data.read_data_sets(FLAGS.raw_dir, one_hot=True) assert FLAGS.data_format == "NCHW", "Scattering only implemented in NCHW" X_tensor = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, 1, 28, 28]) y_tensor = tf.placeholder(tf.int64, shape=[FLAGS.batch_size, 10]) with tf.device('/cpu:0'): X_train = mnist.train.images.astype(np.float32) y_train = mnist.train.labels.astype(np.int64) X_validation = mnist.validation.images.astype(np.float32) y_validation = mnist.validation.labels.astype(np.int64) X_train = (X_train - 0.5) / 0.5 X_train = X_train.reshape((-1, 1, 28, 28)) X_validation = (X_validation - 0.5) / 0.5 X_validation = X_validation.reshape((-1, 1, 28, 28)) # Build model class HybridCNN(models.Model): def __call__(self, x, reuse=False): with tf.variable_scope(self.name) as scope: if reuse: scope.reuse_variables() M, N = x.get_shape().as_list()[-2:] x = scattering.Scattering(M=M, N=N, J=2)(x) x = tf.contrib.layers.batch_norm(x, data_format=FLAGS.data_format, fused=True, scope="scat_bn") x = layers.conv2d_block("CONV2D", x, 64, 1, 1, p="SAME", data_format=FLAGS.data_format, bias=True, bn=False, activation_fn=tf.nn.relu) target_shape = (-1, 64 * 7 * 7) x = layers.reshape(x, target_shape) x = layers.linear(x, 512, name="dense1") x = tf.nn.relu(x) x = layers.linear(x, 10, name="dense2") return x HCNN = HybridCNN("HCNN") y_pred = HCNN(X_tensor) ########################### # Instantiate optimizers ########################### opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='opt', beta1=0.5) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_tensor, logits=y_pred)) correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_tensor, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ########################### # Compute gradient updates ########################### dict_vars = HCNN.get_trainable_variables() all_vars = [dict_vars[k] for k in dict_vars.keys()] gradvar = opt.compute_gradients(loss, var_list=all_vars, colocate_gradients_with_ops=True) update = opt.apply_gradients(gradvar, name='loss_minimize') ########################## # Group training ops ########################## train_ops = [update] loss_ops = [loss, accuracy] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(gradvar) # Add scalar symmaries tf.summary.scalar("loss", loss) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session tu.initialize_session(sess) # Start queues tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: # Get training data X_train_batch, y_train_batch = du.sample_batch( X_train, y_train, FLAGS.batch_size) # Run update and get loss output = sess.run(train_ops + loss_ops + [summary_op], feed_dict={ X_tensor: X_train_batch, y_tensor: y_train_batch }) train_loss = output[1] train_acc = output[2] # Write summaries if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) # Get validation data X_validation_batch, y_validation_batch = du.sample_batch( X_validation, y_validation, FLAGS.batch_size) # Run update and get loss output = sess.run(loss_ops, feed_dict={ X_tensor: X_validation_batch, y_tensor: y_validation_batch }) validation_loss = output[0] validation_acc = output[1] t.set_description( 'Epoch %i: - train loss: %.2f val loss: %.2f - train acc: %.2f val acc: %.2f' % (e, train_loss, validation_loss, train_acc, validation_acc)) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Placeholder for data and Mnist iterator mnist = input_data.read_data_sets(FLAGS.raw_dir, one_hot=True) # images = tf.constant(mnist.train.images) if FLAGS.data_format == "NHWC": X_real = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, 28, 28, 1]) else: X_real = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, 1, 28, 28]) with tf.device('/cpu:0'): imgs = mnist.train.images.astype(np.float32) npts = imgs.shape[0] if FLAGS.data_format == "NHWC": imgs = imgs.reshape((npts, 28, 28, 1)) else: imgs = imgs.reshape((npts, 1, 28, 28)) imgs = (imgs - 0.5) / 0.5 # input_images = tf.constant(imgs) # image = tf.train.slice_input_producer([input_images], num_epochs=FLAGS.nb_epoch) # X_real = tf.train.batch(image, batch_size=FLAGS.batch_size, num_threads=8) ####################### # Instantiate generator ####################### list_filters = [256, 1] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, dset="mnist", data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='G_opt', beta1=0.5) D_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='D_opt', beta1=0.5) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1) noise_input = tf.random_uniform(( FLAGS.batch_size, FLAGS.noise_dim, ), minval=-1, maxval=1) X_fake = G(noise_input) # output images X_G_output = du.unnormalize_image(X_fake) X_real_output = du.unnormalize_image(X_real) D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = objectives.binary_cross_entropy_with_logits( D_fake, tf.ones_like(D_fake)) D_loss_real = objectives.binary_cross_entropy_with_logits( D_real, tf.ones_like(D_real)) D_loss_fake = objectives.binary_cross_entropy_with_logits( D_fake, tf.zeros_like(D_fake)) D_loss = D_loss_real + D_loss_fake # ###################################################################### # # Some parameters need to be updated (e.g. BN moving average/variance) # ###################################################################### # from tensorflow.python.ops import control_flow_ops # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # with tf.control_dependencies(update_ops): # barrier = tf.no_op(name='update_barrier') # D_loss = control_flow_ops.with_dependencies([barrier], D_loss) # G_loss = control_flow_ops.with_dependencies([barrier], G_loss) ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') ########################## # Group training ops ########################## train_ops = [G_update, D_update] loss_ops = [G_loss, D_loss, D_loss_real, D_loss_fake] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss real", D_loss_real) tf.summary.scalar("D loss fake", D_loss_fake) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord = tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) for e in tqdm(range(FLAGS.nb_epoch), desc="\nTraining progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: # X_batch, _ = mnist.train.next_batch(FLAGS.batch_size) # if FLAGS.data_format == "NHWC": # X_batch = np.reshape(X_batch, [-1, 28, 28, 1]) # else: # X_batch = np.reshape(X_batch, [-1, 1, 28, 28]) # X_batch = (X_batch - 0.5) / 0.5 X_batch = du.sample_batch(imgs, FLAGS.batch_size) output = sess.run(train_ops + loss_ops + [summary_op], feed_dict={X_real: X_batch}) if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) lossG, lossDreal, lossDfake = [output[2], output[4], output[5]] t.set_description( 'Epoch %i: - G loss: %.2f D loss real: %.2f Dloss fake: %.2f' % (e, lossG, lossDreal, lossDfake)) # variables = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)] # bmean = [v for v in variables if v.name == "generator/conv2D_1_1/BatchNorm/moving_mean:0"] # print sess.run(bmean) # raw_input() # Plot some generated images # output = sess.run([X_G_output, X_real_output]) output = sess.run([X_G_output, X_real_output], feed_dict={X_real: X_batch}) vu.save_image(output, FLAGS.data_format, e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_training_session() ########## # Innputs ########## # Setup async input queue of real images X_real = du.read_celebA() # Noise batch_size = tf.shape(X_real)[0] z_noise_for_D = tf.random_uniform(( batch_size, FLAGS.z_dim, ), minval=-1, maxval=1, name="z_input_D") z_noise_for_G = tf.random_uniform(( batch_size, FLAGS.z_dim, ), minval=-1, maxval=1, name="z_input_G") # k factor k_factor = tf.Variable(initial_value=0., trainable=False, name='anneal_factor') # learning rate lr = tf.Variable(initial_value=FLAGS.learning_rate, trainable=False, name='learning_rate') ######################## # Instantiate models ######################## G = models.Generator(nb_filters=FLAGS.nb_filters_G) D = models.Discriminator(h_dim=FLAGS.h_dim, nb_filters=FLAGS.nb_filters_D) ########## # Outputs ########## X_rec_real = D(X_real, output_name="X_rec_real") X_fake_for_D = G(z_noise_for_D, output_name="X_fake_for_D") X_rec_fake_for_D = D(X_fake_for_D, reuse=True, output_name="X_rec_fake_for_D") X_fake_for_G = G(z_noise_for_G, reuse=True, output_name="X_fake_for_G") X_rec_fake_for_G = D(X_fake_for_G, reuse=True, output_name="X_rec_fake_for_G") # output images for plots real_toplot = du.unnormalize_image(X_real, name="real_toplot") generated_toplot = du.unnormalize_image(X_fake_for_G, name="generated_toplot") real_rec_toplot = du.unnormalize_image(X_rec_real, name="rec_toplot") generated_rec_toplot = du.unnormalize_image(X_rec_fake_for_G, name="generated_rec_toplot") ########################### # Instantiate optimizers ########################### opt = tf.train.AdamOptimizer(learning_rate=lr, name='opt') ########################### # losses ########################### loss_real = losses.mae(X_real, X_rec_real) loss_fake_for_D = losses.mae(X_fake_for_D, X_rec_fake_for_D) loss_fake_for_G = losses.mae(X_fake_for_G, X_rec_fake_for_G) L_D = loss_real - k_factor * loss_fake_for_D L_G = loss_fake_for_G Convergence = loss_real + tf.abs(FLAGS.gamma * loss_real - loss_fake_for_G) ########################### # Compute updates ops ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = opt.compute_gradients(L_G, var_list=G_vars) G_update = opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = opt.compute_gradients(L_D, var_list=D_vars) D_update = opt.apply_gradients(D_gradvar, name='D_loss_minimize') update_k_factor = tf.assign( k_factor, k_factor + FLAGS.lambdak * (FLAGS.gamma * loss_real - loss_fake_for_G)) update_lr = tf.assign(lr, lr / 2) ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries for G tf.summary.scalar("G loss", L_G) # Add scalar symmaries for D tf.summary.scalar("D loss", L_D) # Add scalar symmaries for D tf.summary.scalar("k_factor", k_factor) tf.summary.scalar("Convergence", Convergence) tf.summary.scalar("learning rate", lr) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord, threads = du.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) # Run checks on data dimensions list_data = [z_noise_for_D, z_noise_for_G] list_data += [ X_real, X_rec_real, X_fake_for_G, X_rec_fake_for_G, X_fake_for_D, X_rec_fake_for_D ] list_data += [generated_toplot, real_toplot] output = sess.run(list_data) tu.check_data(output, list_data) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): # Anneal learning rate every 5 epoch if (e + 1) % 5 == 0: sess.run([update_lr]) t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: output = sess.run([G_update, D_update, update_k_factor]) if batch_counter % (FLAGS.nb_batch_per_epoch // (int(0.5 * FLAGS.nb_batch_per_epoch))) == 0: output = sess.run([summary_op]) writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %s:' % e) # Plot some generated images Xf, Xr, Xrrec, Xfrec = sess.run([ generated_toplot, real_toplot, real_rec_toplot, generated_rec_toplot ]) vu.save_image(Xf, Xr, title="current_batch", e=e) vu.save_image(Xrrec, Xfrec, title="reconstruction", e=e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) # Show data statistics output = sess.run(list_data) tu.check_data(output, list_data) # Stop threads coord.request_stop() coord.join(threads) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Setup async input queue of real images X_real = du.input_data(sess) ####################### # Instantiate generator ####################### list_filters = [256, 128, 64, 3] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64, 128, 256] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='G_opt', beta1=0.5) D_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='D_opt', beta1=0.5) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1, name="noise_input") noise_input = tf.random_uniform(( FLAGS.batch_size, FLAGS.noise_dim, ), minval=-1, maxval=1, name="noise_input") X_fake = G(noise_input) # output images X_G_output = du.unnormalize_image(X_fake, name="X_G_output") X_real_output = du.unnormalize_image(X_real, name="X_real_output") D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = objectives.binary_cross_entropy_with_logits( D_fake, tf.ones_like(D_fake)) D_loss_real = objectives.binary_cross_entropy_with_logits( D_real, tf.ones_like(D_real)) D_loss_fake = objectives.binary_cross_entropy_with_logits( D_fake, tf.zeros_like(D_fake)) # G_loss = objectives.wasserstein(D_fake, -tf.ones_like(D_fake)) # D_loss_real = objectives.wasserstein(D_real, -tf.ones_like(D_real)) # D_loss_fake = objectives.wasserstein(D_fake, tf.ones_like(D_fake)) D_loss = D_loss_real + D_loss_fake ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') # clip_op = [var.assign(tf.clip_by_value(var, -0.01, 0.01)) for var in D_vars] G_update = G_opt.minimize(G_loss, var_list=G_vars, name='G_loss_minimize') D_update = D_opt.minimize(D_loss, var_list=D_vars, name='D_loss_minimize') ########################## # Group training ops ########################## train_ops = [G_update, D_update] loss_ops = [G_loss, D_loss, D_loss_real, D_loss_fake] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss real", D_loss_real) tf.summary.scalar("D loss fake", D_loss_fake) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord = tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) # Run checks on data dimensions list_data = [noise_input, X_real, X_fake, X_G_output, X_real_output] output = sess.run([noise_input, X_real, X_fake, X_G_output, X_real_output]) tu.check_data(output, list_data) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): list_G_loss = [] list_D_loss_real = [] list_D_loss_fake = [] t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: o_D = sess.run([D_update, D_loss_real, D_loss_fake]) sess.run([G_update, G_loss]) o_G = sess.run([G_update, G_loss]) output = sess.run([summary_op]) list_G_loss.append(o_G[-1]) list_D_loss_real.append(o_D[-2]) list_D_loss_fake.append(o_D[-1]) # output = sess.run(train_ops + loss_ops + [summary_op]) # list_G_loss.append(output[2]) # list_D_loss_real.append(output[4]) # list_D_loss_fake.append(output[5]) if batch_counter % (FLAGS.nb_batch_per_epoch // (int(0.5 * FLAGS.nb_batch_per_epoch))) == 0: writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description( 'Epoch %i: - G loss: %.3f D loss real: %.3f Dloss fake: %.3f' % (e, np.mean(list_G_loss), np.mean(list_D_loss_real), np.mean(list_D_loss_fake))) # Plot some generated images output = sess.run([X_G_output, X_real_output]) vu.save_image(output, FLAGS.data_format, e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) if e == 0: print(len(list_data)) output = sess.run( [noise_input, X_real, X_fake, X_G_output, X_real_output]) tu.check_data(output, list_data) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Setup async input queue of real images #X_input = du.input_data(sess) #X_real, X_fake_in = X_input[0], X_input[1] X_real, X_fake_in = du.input_data(sess) X_real_name = X_real[1] X_real = X_real[0] X_fake_name = X_fake_in[1] X_fake_in = X_fake_in[0] #X, Y = create_datasets(no_dir, yes_dir) #X_fake_in = tf.placeholder(tf.float32, (batch_size, 96, 96, 3)) #X_real = tf.placeholder(tf.float32, (batch_size, 96, 96, 3)) ####################### # Instantiate generator ####################### list_filters = [256, 128, 64, 3] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64, 128, 256] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=1E-4, name='G_opt', beta1=0.5, beta2=0.9) D_opt = tf.train.AdamOptimizer(learning_rate=1E-4, name='D_opt', beta1=0.5, beta2=0.9) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1) noise_input = tf.random_uniform(( FLAGS.batch_size, FLAGS.noise_dim, ), minval=-1, maxval=1) X_fake = G(X_fake_in) #X_fake = G(noise_input) # output images #X_G_input = du.unnormalize_image(X_fake_in) X_G_output = du.unnormalize_image(X_fake) X_real_output = du.unnormalize_image(X_real) D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = -tf.reduce_mean(D_fake) + (tf.reduce_mean(abs(X_fake - X_real))) D_loss = tf.reduce_mean(D_fake) - tf.reduce_mean(D_real) epsilon = tf.random_uniform(shape=[FLAGS.batch_size, 1, 1, 1], minval=0., maxval=1.) X_hat = X_real + epsilon * (X_fake - X_real) D_X_hat = D(X_hat, reuse=True) grad_D_X_hat = tf.gradients(D_X_hat, [X_hat])[0] if FLAGS.data_format == "NCHW": red_idx = [1] else: red_idx = [-1] slopes = tf.sqrt( tf.reduce_sum(tf.square(grad_D_X_hat), reduction_indices=red_idx)) gradient_penalty = tf.reduce_mean((slopes - 1.)**2) D_loss += 10 * gradient_penalty ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars, colocate_gradients_with_ops=True) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars, colocate_gradients_with_ops=True) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') ########################## # Group training ops ########################## loss_ops = [G_loss, D_loss] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss", D_loss) tf.summary.scalar("gradient_penalty", gradient_penalty) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) txtfile = open("/home/ubuntu/makeup_removal/WGAN-GP/testfile.txt", "w") g_loss_list = [] d_loss_list = [] for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) num = 0 for batch_counter in t: #with_makeup_batch, without_makeup_batch = nextBatch(X, Y, num, batch_size) num += 1 g_loss_total = 0 d_loss_total = 0 for di in range(5): sess.run([D_update]) # #output = sess.run([G_update] + loss_ops + [summary_op]) #sess.run([D_update]) output = sess.run([G_update] + loss_ops + [summary_op]) g_loss, d_loss = sess.run([G_loss, D_loss]) g_loss_total += g_loss d_loss_total += d_loss #print (g_loss, d_loss) if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %i' % e) g_loss_list.append(g_loss_total) d_loss_list.append(d_loss_total) # Plot some generated images #output = sess.run([X_G_output, X_G_input, X_real_output]) output = sess.run( [X_G_output, X_real_output, X_fake_name, X_real_name]) vu.save_image(output[:2], FLAGS.data_format, e) name = output[2:] print(name) with open('/home/ubuntu/makeup_removal/WGAN-GP/testfile.txt', 'a') as f: f.write(str(e)) f.write('\n') for array in name: for n in array: f.write(str(n)) f.write('\n') f.write('\n\n') #txtfile.close() #print (name) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) print('Finished training!') plt.plot(range(FLAGS.nb_epoch), g_loss_list, label='g_loss') plt.plot(range(FLAGS.nb_epoch), d_loss_list, label='d_loss') plt.legend() plt.title('G:1E-4, D:1E-4') plt.xlabel('epoch') plt.ylabel('loss') plt.savefig('/home/ubuntu/makeup_removal/WGAN-GP/G_4_D_4.png')
def train_model(): # Setup session sess = tu.setup_training_session() ########## # Innputs ########## # Setup async input queue of real images X_real = du.read_celebA() # Noise batch_size = tf.shape(X_real)[0] z_noise = tf.random_uniform((batch_size, FLAGS.z_dim), minval=-1, maxval=1, name="z_input") epsilon = tf.random_uniform((batch_size, 1, 1, 1), minval=0, maxval=1, name="epsilon") # learning rate lr_D = tf.Variable(initial_value=FLAGS.learning_rate, trainable=False, name='learning_rate') lr_G = tf.Variable(initial_value=FLAGS.learning_rate, trainable=False, name='learning_rate') ######################## # Instantiate models ######################## G = models.Generator() D = models.Discriminator() ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=lr_D, name='G_opt', beta1=0.5) D_opt = tf.train.AdamOptimizer(learning_rate=lr_G, name='D_opt', beta1=0.5) ########## # Outputs ########## X_fake = G(z_noise) X_hat = epsilon * X_real + (1 - epsilon) * X_fake D_real = D(X_real) D_fake = D(X_fake, reuse=True) D_X_hat = D(X_hat, reuse=True) grad_D_X_hat = tf.gradients(D_X_hat, X_hat)[0] # output images generated_toplot = du.unnormalize_image(X_fake, name="generated_toplot") real_toplot = du.unnormalize_image(X_real, name="real_toplot") ########################### # losses ########################### G_loss = losses.wasserstein(D_fake, -tf.ones_like(D_fake)) D_loss_grad = FLAGS.lbd * tf.square((tf.nn.l2_loss(grad_D_X_hat) - 1)) D_loss_real = losses.wasserstein(D_real, -tf.ones_like(D_real)) D_loss_fake = losses.wasserstein(D_fake, tf.ones_like(D_fake)) D_loss = D_loss_grad + D_loss_real + D_loss_fake ########################### # Compute updates ops ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') # D_gradvar_fake = D_opt.compute_gradients(D_loss_fake, var_list=D_vars) # D_update_fake = D_opt.apply_gradients(D_gradvar_fake, name='D_loss_minimize_fake') ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # tu.add_gradient_summary(D_gradvar_fake) # Add scalar symmaries for G tf.summary.scalar("G loss", G_loss) # Add scalar symmaries for D tf.summary.scalar("D loss real", D_loss_real) tf.summary.scalar("D loss fake", D_loss_fake) tf.summary.scalar("D loss grad", D_loss_grad) # Add scalar symmaries for D summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord, threads = du.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) # Run checks on data dimensions list_data = [z_noise] list_data += [X_real, X_fake] list_data += [generated_toplot, real_toplot] output = sess.run(list_data) tu.check_data(output, list_data) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: # Update discriminator for i_D in range(FLAGS.ncritic): sess.run([D_update]) # r = np.random.randint(0, 2) # if r == 0: # sess.run([D_update_real]) # else: # sess.run([D_update_fake]) # Update generator sess.run([G_update]) if batch_counter % (FLAGS.nb_batch_per_epoch // (int(0.5 * FLAGS.nb_batch_per_epoch))) == 0: output = sess.run([summary_op]) writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %s:' % e) # Plot some generated images Xf, Xr = sess.run([generated_toplot, real_toplot]) vu.save_image(Xf, Xr, title="current_batch", e=e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) # Show data statistics output = sess.run(list_data) tu.check_data(output, list_data) # Stop threads coord.request_stop() coord.join(threads) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Placeholder for data and Mnist iterator mnist = input_data.read_data_sets(FLAGS.raw_dir, one_hot=True) assert FLAGS.data_format == "NCHW", "Scattering only implemented in NCHW" X_tensor = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, 1, 28, 28]) y_tensor = tf.placeholder(tf.int64, shape=[FLAGS.batch_size, 10]) with tf.device('/cpu:0'): X_train = mnist.train.images.astype(np.float32) y_train = mnist.train.labels.astype(np.int64) X_validation = mnist.validation.images.astype(np.float32) y_validation = mnist.validation.labels.astype(np.int64) X_train = (X_train - 0.5) / 0.5 X_train = X_train.reshape((-1, 1, 28, 28)) X_validation = (X_validation - 0.5) / 0.5 X_validation = X_validation.reshape((-1, 1, 28, 28)) # Build model class HybridCNN(models.Model): def __call__(self, x, reuse=False): with tf.variable_scope(self.name) as scope: if reuse: scope.reuse_variables() M, N = x.get_shape().as_list()[-2:] x = scattering.Scattering(M=M, N=N, J=2)(x) x = tf.contrib.layers.batch_norm(x, data_format=FLAGS.data_format, fused=True, scope="scat_bn") x = layers.conv2d_block("CONV2D", x, 64, 1, 1, p="SAME", data_format=FLAGS.data_format, bias=True, bn=False, activation_fn=tf.nn.relu) target_shape = (-1, 64 * 7 * 7) x = layers.reshape(x, target_shape) x = layers.linear(x, 512, name="dense1") x = tf.nn.relu(x) x = layers.linear(x, 10, name="dense2") return x HCNN = HybridCNN("HCNN") y_pred = HCNN(X_tensor) ########################### # Instantiate optimizers ########################### opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='opt', beta1=0.5) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_tensor, logits=y_pred)) correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_tensor, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ########################### # Compute gradient updates ########################### dict_vars = HCNN.get_trainable_variables() all_vars = [dict_vars[k] for k in dict_vars.keys()] gradvar = opt.compute_gradients(loss, var_list=all_vars, colocate_gradients_with_ops=True) update = opt.apply_gradients(gradvar, name='loss_minimize') ########################## # Group training ops ########################## train_ops = [update] loss_ops = [loss, accuracy] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(gradvar) # Add scalar symmaries tf.summary.scalar("loss", loss) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session tu.initialize_session(sess) # Start queues tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: # Get training data X_train_batch, y_train_batch = du.sample_batch(X_train, y_train, FLAGS.batch_size) # Run update and get loss output = sess.run(train_ops + loss_ops + [summary_op], feed_dict={X_tensor: X_train_batch, y_tensor: y_train_batch}) train_loss = output[1] train_acc = output[2] # Write summaries if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary(output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) # Get validation data X_validation_batch, y_validation_batch = du.sample_batch(X_validation, y_validation, FLAGS.batch_size) # Run update and get loss output = sess.run(loss_ops, feed_dict={X_tensor: X_validation_batch, y_tensor: y_validation_batch}) validation_loss = output[0] validation_acc = output[1] t.set_description('Epoch %i: - train loss: %.2f val loss: %.2f - train acc: %.2f val acc: %.2f' % (e, train_loss, validation_loss, train_acc, validation_acc)) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Setup async input queue of real images X_real = du.input_data(sess) ####################### # Instantiate generator ####################### list_filters = [256, 128, 64, 3] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64, 128, 256] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=1E-4, name='G_opt', beta1=0.5, beta2=0.9) D_opt = tf.train.AdamOptimizer(learning_rate=1E-4, name='D_opt', beta1=0.5, beta2=0.9) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1) noise_input = tf.random_uniform(( FLAGS.batch_size, FLAGS.noise_dim, ), minval=-1, maxval=1) X_fake = G(noise_input) # output images X_G_output = du.unnormalize_image(X_fake) X_real_output = du.unnormalize_image(X_real) D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = -tf.reduce_mean(D_fake) D_loss = tf.reduce_mean(D_fake) - tf.reduce_mean(D_real) epsilon = tf.random_uniform(shape=[FLAGS.batch_size, 1, 1, 1], minval=0., maxval=1.) X_hat = X_real + epsilon * (X_fake - X_real) D_X_hat = D(X_hat, reuse=True) grad_D_X_hat = tf.gradients(D_X_hat, [X_hat])[0] if FLAGS.data_format == "NCHW": red_idx = [1] else: red_idx = [-1] slopes = tf.sqrt( tf.reduce_sum(tf.square(grad_D_X_hat), reduction_indices=red_idx)) gradient_penalty = tf.reduce_mean((slopes - 1.)**2) D_loss += 10 * gradient_penalty ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars, colocate_gradients_with_ops=True) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars, colocate_gradients_with_ops=True) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') ########################## # Group training ops ########################## loss_ops = [G_loss, D_loss] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss", D_loss) tf.summary.scalar("gradient_penalty", gradient_penalty) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: for di in range(5): sess.run([D_update]) output = sess.run([G_update] + loss_ops + [summary_op]) if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary( output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %i' % e) # Plot some generated images output = sess.run([X_G_output, X_real_output]) vu.save_image(output, FLAGS.data_format, e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Setup async input queue of real images X_real = du.input_data(sess) ####################### # Instantiate generator ####################### list_filters = [256, 128, 64, 3] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64, 128, 256] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='G_opt', beta1=0.5) D_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate, name='D_opt', beta1=0.5) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1, name="noise_input") noise_input = tf.random_uniform((FLAGS.batch_size, FLAGS.noise_dim,), minval=-1, maxval=1, name="noise_input") X_fake = G(noise_input) # output images X_G_output = du.unnormalize_image(X_fake, name="X_G_output") X_real_output = du.unnormalize_image(X_real, name="X_real_output") D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = objectives.binary_cross_entropy_with_logits(D_fake, tf.ones_like(D_fake)) D_loss_real = objectives.binary_cross_entropy_with_logits(D_real, tf.ones_like(D_real)) D_loss_fake = objectives.binary_cross_entropy_with_logits(D_fake, tf.zeros_like(D_fake)) # G_loss = objectives.wasserstein(D_fake, -tf.ones_like(D_fake)) # D_loss_real = objectives.wasserstein(D_real, -tf.ones_like(D_real)) # D_loss_fake = objectives.wasserstein(D_fake, tf.ones_like(D_fake)) D_loss = D_loss_real + D_loss_fake ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') # clip_op = [var.assign(tf.clip_by_value(var, -0.01, 0.01)) for var in D_vars] G_update = G_opt.minimize(G_loss, var_list=G_vars, name='G_loss_minimize') D_update = D_opt.minimize(D_loss, var_list=D_vars, name='D_loss_minimize') ########################## # Group training ops ########################## train_ops = [G_update, D_update] loss_ops = [G_loss, D_loss, D_loss_real, D_loss_fake] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss real", D_loss_real) tf.summary.scalar("D loss fake", D_loss_fake) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues coord = tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) # Run checks on data dimensions list_data = [noise_input, X_real, X_fake, X_G_output, X_real_output] output = sess.run([noise_input, X_real, X_fake, X_G_output, X_real_output]) tu.check_data(output, list_data) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): list_G_loss = [] list_D_loss_real = [] list_D_loss_fake = [] t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: o_D = sess.run([D_update, D_loss_real, D_loss_fake]) sess.run([G_update, G_loss]) o_G = sess.run([G_update, G_loss]) output = sess.run([summary_op]) list_G_loss.append(o_G[-1]) list_D_loss_real.append(o_D[-2]) list_D_loss_fake.append(o_D[-1]) # output = sess.run(train_ops + loss_ops + [summary_op]) # list_G_loss.append(output[2]) # list_D_loss_real.append(output[4]) # list_D_loss_fake.append(output[5]) if batch_counter % (FLAGS.nb_batch_per_epoch // (int(0.5 * FLAGS.nb_batch_per_epoch))) == 0: writer.add_summary(output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %i: - G loss: %.3f D loss real: %.3f Dloss fake: %.3f' % (e, np.mean(list_G_loss), np.mean(list_D_loss_real), np.mean(list_D_loss_fake))) # Plot some generated images output = sess.run([X_G_output, X_real_output]) vu.save_image(output, FLAGS.data_format, e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) if e == 0: print len(list_data) output = sess.run([noise_input, X_real, X_fake, X_G_output, X_real_output]) tu.check_data(output, list_data) print('Finished training!')
def train_model(): # Setup session sess = tu.setup_session() # Setup async input queue of real images X_real = du.input_data(sess) ####################### # Instantiate generator ####################### list_filters = [256, 128, 64, 3] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) output_shape = X_real.get_shape().as_list()[1:] G = models.Generator(list_filters, list_kernel_size, list_strides, list_padding, output_shape, batch_size=FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate discriminator ########################### list_filters = [32, 64, 128, 256] list_strides = [2] * len(list_filters) list_kernel_size = [3] * len(list_filters) list_padding = ["SAME"] * len(list_filters) D = models.Discriminator(list_filters, list_kernel_size, list_strides, list_padding, FLAGS.batch_size, data_format=FLAGS.data_format) ########################### # Instantiate optimizers ########################### G_opt = tf.train.AdamOptimizer(learning_rate=1E-4, name='G_opt', beta1=0.5, beta2=0.9) D_opt = tf.train.AdamOptimizer(learning_rate=1E-4, name='D_opt', beta1=0.5, beta2=0.9) ########################### # Instantiate model outputs ########################### # noise_input = tf.random_normal((FLAGS.batch_size, FLAGS.noise_dim,), stddev=0.1) noise_input = tf.random_uniform((FLAGS.batch_size, FLAGS.noise_dim,), minval=-1, maxval=1) X_fake = G(noise_input) # output images X_G_output = du.unnormalize_image(X_fake) X_real_output = du.unnormalize_image(X_real) D_real = D(X_real) D_fake = D(X_fake, reuse=True) ########################### # Instantiate losses ########################### G_loss = -tf.reduce_mean(D_fake) D_loss = tf.reduce_mean(D_fake) - tf.reduce_mean(D_real) epsilon = tf.random_uniform( shape=[FLAGS.batch_size, 1, 1, 1], minval=0., maxval=1. ) X_hat = X_real + epsilon * (X_fake - X_real) D_X_hat = D(X_hat, reuse=True) grad_D_X_hat = tf.gradients(D_X_hat, [X_hat])[0] if FLAGS.data_format == "NCHW": red_idx = [1] else: red_idx = [-1] slopes = tf.sqrt(tf.reduce_sum(tf.square(grad_D_X_hat), reduction_indices=red_idx)) gradient_penalty = tf.reduce_mean((slopes - 1.)**2) D_loss += 10 * gradient_penalty ########################### # Compute gradient updates ########################### dict_G_vars = G.get_trainable_variables() G_vars = [dict_G_vars[k] for k in dict_G_vars.keys()] dict_D_vars = D.get_trainable_variables() D_vars = [dict_D_vars[k] for k in dict_D_vars.keys()] G_gradvar = G_opt.compute_gradients(G_loss, var_list=G_vars, colocate_gradients_with_ops=True) G_update = G_opt.apply_gradients(G_gradvar, name='G_loss_minimize') D_gradvar = D_opt.compute_gradients(D_loss, var_list=D_vars, colocate_gradients_with_ops=True) D_update = D_opt.apply_gradients(D_gradvar, name='D_loss_minimize') ########################## # Group training ops ########################## loss_ops = [G_loss, D_loss] ########################## # Summary ops ########################## # Add summary for gradients tu.add_gradient_summary(G_gradvar) tu.add_gradient_summary(D_gradvar) # Add scalar symmaries tf.summary.scalar("G loss", G_loss) tf.summary.scalar("D loss", D_loss) tf.summary.scalar("gradient_penalty", gradient_penalty) summary_op = tf.summary.merge_all() ############################ # Start training ############################ # Initialize session saver = tu.initialize_session(sess) # Start queues tu.manage_queues(sess) # Summaries writer = tu.manage_summaries(sess) for e in tqdm(range(FLAGS.nb_epoch), desc="Training progress"): t = tqdm(range(FLAGS.nb_batch_per_epoch), desc="Epoch %i" % e, mininterval=0.5) for batch_counter in t: for di in range(5): sess.run([D_update]) output = sess.run([G_update] + loss_ops + [summary_op]) if batch_counter % (FLAGS.nb_batch_per_epoch // 20) == 0: writer.add_summary(output[-1], e * FLAGS.nb_batch_per_epoch + batch_counter) t.set_description('Epoch %i' % e) # Plot some generated images output = sess.run([X_G_output, X_real_output]) vu.save_image(output, FLAGS.data_format, e) # Save session saver.save(sess, os.path.join(FLAGS.model_dir, "model"), global_step=e) print('Finished training!')