Exemple #1
0
    def test_init(self):
        """
            test if the trajectory initialization is working properly:
            - initializing the trajectory with an array, a tuple or from file must
            give the same result
            - test if compute_all = True runs without error
        """
        traj = np.zeros((370, 4))
        path = os.environ['TRAVIS_BUILD_DIR']

        init_from_file = tj.Trajectory(path + '/data/samples/sample.csv',
                                       skip_header=1,
                                       delimiter=',')
        traj[:, 0] = np.copy(init_from_file._t)
        traj[:, 1:] = np.copy(init_from_file._r)
        t = np.copy(traj[:, 0])
        x, y, z = np.copy(traj[:, 1]), np.copy(traj[:, 2]), np.copy(traj[:, 3])
        init_from_array = tj.Trajectory(traj)
        init_from_tuple = tj.Trajectory((t, x, y, z))
        self.assertEqual(init_from_array._r.all(), init_from_file._r.all())
        self.assertEqual(init_from_tuple._r.all(), init_from_file._r.all())
        self.assertRaises(TypeError, tj.Trajectory, 1.0)

        r = tj.Trajectory(traj)
        r.compute_features
Exemple #2
0
    def test_gyration_radius_and_asymmetry(self):
        """
            testing the radius of gyration for some basic cases
            circle: Rg = R/2
        """
        length = 20
        circle = np.zeros((length, 2))
        radius = 10
        circle_gyr = np.array([[radius, 0.], [0., radius]]) / 2

        x1 = np.linspace(0, 100, 1000)
        x2 = np.cos(np.pi * np.linspace(0, 100, 1000))
        x1x2 = np.array([x1, x2]).transpose()

        for n in range(0, length):
            circle[n] = radius * np.array(
                [np.cos(np.pi * n / 10),
                 np.sin(np.pi * n / 10)])

        r = tj.Trajectory()
        gyration_radius_circle = r.gyration_radius_(circle)
        gyration_radius_osci = r.gyration_radius_(x1x2)
        eigenvalues_circle = np.linalg.eigvals(gyration_radius_circle)
        eigenvalues_osci = np.linalg.eigvals(gyration_radius_osci)
        asymmetry_oscillatory = r.asymmetry_(eigenvalues_osci)
        asymmetry_circle = r.asymmetry_(eigenvalues_circle)

        self.assertAlmostEqual(asymmetry_oscillatory,
                               asymmetry_oscillatory,
                               places=1)
        self.assertAlmostEqual(asymmetry_circle, asymmetry_circle, places=1)
        self.assertEqual(
            np.round(gyration_radius_circle, 2).all(),
            np.round(circle_gyr, 2).all())
Exemple #3
0
    def test_fractal_dimension(self):
        """
            test if the fractal dimension is being computed correctly
        """

        x1 = np.linspace(0, 100, 100)
        x2 = np.random.rand(100)

        r = tj.Trajectory()

        self.assertAlmostEqual(r.fractal_dimension_(x1)[0], 1.0, places=2)
        self.assertGreaterEqual(r.fractal_dimension_(x2)[0], 3.0)
Exemple #4
0
    def test_green_kubo(self):
        """
            test Green-Kubo diffusivity function
        """

        r = tj.Trajectory()
        x1 = np.linspace(0, 100, 100)
        x2 = np.random.rand(100)
        x3 = np.random.rand(100)
        r._r = np.array([x1, x2, x3]).transpose()
        r._t = np.linspace(0, 100, 100)
        self.assertAlmostEqual(r.green_kubo_(), 50.53, places=1)
Exemple #5
0
 def test_kurtosis(self):
     """
         testing the kurtosis function
     """
     r = tj.Trajectory()
     x1 = np.random.rand(100)
     x2 = np.random.rand(100)
     x3 = np.random.rand(100)
     x1x2 = np.array([x1, x2, x3]).transpose()
     r.gyration_radius = r.gyration_radius_(x1x2)
     r.eigenvalues, r.eigenvectors = np.linalg.eig(r.gyration_radius)
     idx = r.eigenvalues.argsort()[::-1]
     r.kurtosis = r.kurtosis_(x1x2, r.eigenvectors[idx[0]])
     self.assertAlmostEqual(r.kurtosis, 2.26, places=1)
Exemple #6
0
    def test_straightness(self):
        """
            testing the straightness function for three cases
            x1 - linear; x2 - oscillatory; x1x2 - mixed components
        """

        x1 = np.linspace(0, 100, 1000)
        x2 = np.cos(np.pi * np.linspace(0, 100, 1000))
        x1x2 = np.array([x1, x2]).transpose()

        r = tj.Trajectory()

        self.assertAlmostEqual(r.straightness_(x1), 1.0, places=2)
        self.assertAlmostEqual(r.straightness_(x2), 0.0, places=2)
        self.assertAlmostEqual(r.straightness_(x1x2), 0.43, places=1)
Exemple #7
0
    def test_efficiency(self):
        """
            test if the efficiency is being computed correctly for three cases
            1) linear trajectory 2) random steps and 3) oscillatory.
        """

        x1 = np.linspace(0, 100, 100)
        x2 = np.random.rand(100)
        x3 = np.cos(np.pi * np.linspace(0, 100, 1000))

        r = tj.Trajectory()

        self.assertAlmostEqual(r.efficiency_(x1), 1.0, places=2)
        self.assertAlmostEqual(r.efficiency_(x2), 0.0, places=2)
        self.assertAlmostEqual(r.straightness_(x3), 0.0, places=1)
Exemple #8
0
    def test_anomalous_diffusion(self):
        """
        Test if the generator of anomalous trajectories is working properly
        by measuring the fractal dimension.
        """
        n_steps = 250
        n_samples = 1
        dt = 1.

        xa, trajectory = tjg.anomalous_diffusion(n_steps,
                                                 n_samples,
                                                 dt,
                                                 alpha=1.0)

        r = tj.Trajectory()

        fractal_dimension, d_max = r.fractal_dimension_(trajectory)

        self.assertAlmostEqual(fractal_dimension, 3.08, places=1)
Exemple #9
0
    def test_superdiffusion(self):
        """
        Test if the generator of superdiffusion trajectories is working properly
        by measuring the fractal dimension.
        """
        n_steps = 250
        n_samples = 1
        dt = 0.1
        velocity = 1.0

        xa, trajectory = tjg.superdiffusion(velocity, n_steps, n_samples, 0.,
                                            dt)

        r = tj.Trajectory()

        fractal_dimension, d_max = r.fractal_dimension_(trajectory)

        self.assertAlmostEqual(np.around(fractal_dimension, decimals=0),
                               1.0,
                               places=1)
Exemple #10
0
    def test_confined_diffusion(self):
        """
        Test if the generator of confined diffusion trajectories is working properly
        by measuring the fractal dimension.
        """
        n_steps = 250
        n_samples = 1
        dt = 0.1
        D = 100.0
        radius = 5.

        xa, trajectory = tjg.confined_diffusion(radius, n_steps, n_samples,
                                                1.0, 0., D, dt)

        r = tj.Trajectory()

        fractal_dimension, d_max = r.fractal_dimension_(trajectory)

        self.assertAlmostEqual(np.around(fractal_dimension, decimals=0),
                               3.0,
                               places=1)
Exemple #11
0
 def open(self):
     self.r = tj.Trajectory(self.path, skip_header=1, delimiter=',')
Exemple #12
0
import trajpy.trajpy as tj

filename = '../data/samples/sample.csv'
r = tj.Trajectory(filename, skip_header=1, delimiter=',')

r.compute_features()

print(r.efficiency, r.asymmetry, r.gaussianity, r.straightness,
      r.gyration_radius, r.kurtosis, r.anisotropy)