def subset(input_path, output_path, audio_name, align_boundary_words, cer, wer, duration, gap, unk, num_speakers): cat = output_path.endswith('.json') meta = dict( align_boundary_words = align_boundary_words, cer = cer, wer = wer, duration = duration, gap = gap, unk = unk, num_speakers = num_speakers ) transcript_cat = [] for transcript_name in os.listdir(input_path): if not transcript_name.endswith('.json'): continue transcript = json.load(open(os.path.join(input_path, transcript_name))) transcript = [dict(meta = meta, **t) for t in transcripts.prune(transcript, audio_name = audio_name, **meta)] transcript_cat.extend(transcript) if not cat: os.makedirs(output_path, exist_ok = True) json.dump( transcript, open(os.path.join(output_path, transcript_name), 'w'), ensure_ascii = False, sort_keys = True, indent = 2 ) if cat: json.dump(transcript_cat, open(output_path, 'w'), ensure_ascii = False, sort_keys = True, indent = 2) print(output_path)
def main(args, ext_json=['.json', '.json.gz']): utils.enable_jit_fusion() assert args.output_json or args.output_html or args.output_txt or args.output_csv, \ 'at least one of the output formats must be provided' os.makedirs(args.output_path, exist_ok=True) audio_data_paths = set( p for f in args.input_path for p in ([os.path.join(f, g) for g in os.listdir(f)] if os.path.isdir(f) else [f]) if os.path.isfile(p) and any(map(p.endswith, args.ext))) json_data_paths = set( p for p in args.input_path if any(map(p.endswith, ext_json)) and not utils.strip_suffixes(p, ext_json) in audio_data_paths) data_paths = list(audio_data_paths | json_data_paths) exclude = set([ os.path.splitext(basename)[0] for basename in os.listdir(args.output_path) if basename.endswith('.json') ]) if args.skip_processed else None data_paths = [ path for path in data_paths if exclude is None or os.path.basename(path) not in exclude ] text_pipeline, frontend, model, generator = setup(args) val_dataset = datasets.AudioTextDataset( data_paths, [text_pipeline], args.sample_rate, frontend=frontend if not args.frontend_in_model else None, mono=args.mono, time_padding_multiple=args.batch_time_padding_multiple, audio_backend=args.audio_backend, exclude=exclude, max_duration=args.transcribe_first_n_sec, mode='batched_channels' if args.join_transcript else 'batched_transcript', string_array_encoding=args.dataset_string_array_encoding, debug_short_long_records_features_from_whole_normalized_signal=args. debug_short_long_records_features_from_whole_normalized_signal) print('Examples count: ', len(val_dataset)) val_meta = val_dataset.pop_meta() val_data_loader = torch.utils.data.DataLoader( val_dataset, batch_size=None, collate_fn=val_dataset.collate_fn, num_workers=args.num_workers) csv_sep = dict(tab='\t', comma=',')[args.csv_sep] csv_lines = [] # only used if args.output_csv is True oom_handler = utils.OomHandler(max_retries=args.oom_retries) for i, (meta, s, x, xlen, y, ylen) in enumerate(val_data_loader): print(f'Processing: {i}/{len(val_dataset)}') meta = [val_meta[t['example_id']] for t in meta] audio_path = meta[0]['audio_path'] audio_name = transcripts.audio_name(audio_path) begin_end = [dict(begin=t['begin'], end=t['end']) for t in meta] begin = torch.tensor([t['begin'] for t in begin_end], dtype=torch.float) end = torch.tensor([t['end'] for t in begin_end], dtype=torch.float) #TODO WARNING assumes frontend not in dataset if not args.frontend_in_model: print('\n' * 10 + 'WARNING\n' * 5) print( 'transcribe.py assumes frontend in model, in other case time alignment was incorrect' ) print('WARNING\n' * 5 + '\n') duration = x.shape[-1] / args.sample_rate channel = [t['channel'] for t in meta] speaker = [t['speaker'] for t in meta] speaker_name = [t['speaker_name'] for t in meta] if x.numel() == 0: print(f'Skipping empty [{audio_path}].') continue try: tic = time.time() y, ylen = y.to(args.device), ylen.to(args.device) log_probs, logits, olen = model( x.squeeze(1).to(args.device), xlen.to(args.device)) print('Input:', audio_name) print('Input time steps:', log_probs.shape[-1], '| target time steps:', y.shape[-1]) print( 'Time: audio {audio:.02f} sec | processing {processing:.02f} sec' .format(audio=sum(map(transcripts.compute_duration, meta)), processing=time.time() - tic)) ts: shaping.Bt = duration * torch.linspace( 0, 1, steps=log_probs.shape[-1], device=log_probs.device).unsqueeze(0).expand(x.shape[0], -1) ref_segments = [[ dict(channel=channel[i], begin=begin_end[i]['begin'], end=begin_end[i]['end'], ref=text_pipeline.postprocess( text_pipeline.preprocess(meta[i]['ref']))) ] for i in range(len(meta))] hyp_segments = [ alternatives[0] for alternatives in generator.generate( tokenizer=text_pipeline.tokenizer, log_probs=log_probs, begin=begin, end=end, output_lengths=olen, time_stamps=ts, segment_text_key='hyp', segment_extra_info=[ dict(speaker=s, speaker_name=sn, channel=c) for s, sn, c in zip(speaker, speaker_name, channel) ]) ] hyp_segments = [ transcripts.map_text(text_pipeline.postprocess, hyp=hyp) for hyp in hyp_segments ] hyp, ref = '\n'.join( transcripts.join(hyp=h) for h in hyp_segments).strip(), '\n'.join( transcripts.join(ref=r) for r in ref_segments).strip() if args.verbose: print('HYP:', hyp) print('CER: {cer:.02%}'.format(cer=metrics.cer(hyp=hyp, ref=ref))) tic_alignment = time.time() if args.align and y.numel() > 0: alignment: shaping.BY = ctc.alignment( log_probs.permute(2, 0, 1), y[:, 0, :], # assumed that 0 channel is char labels olen, ylen[:, 0], blank=text_pipeline.tokenizer.eps_id, pack_backpointers=args.pack_backpointers) aligned_ts: shaping.Bt = ts.gather(1, alignment) ref_segments = [ alternatives[0] for alternatives in generator.generate( tokenizer=text_pipeline.tokenizer, log_probs=torch.nn.functional.one_hot( y[:, 0, :], num_classes=log_probs.shape[1]).permute( 0, 2, 1), begin=begin, end=end, output_lengths=ylen, time_stamps=aligned_ts, segment_text_key='ref', segment_extra_info=[ dict(speaker=s, speaker_name=sn, channel=c) for s, sn, c in zip(speaker, speaker_name, channel) ]) ] ref_segments = [ transcripts.map_text(text_pipeline.postprocess, hyp=ref) for ref in ref_segments ] oom_handler.reset() except: if oom_handler.try_recover(model.parameters()): print(f'Skipping {i} / {len(val_dataset)}') continue else: raise print('Alignment time: {:.02f} sec'.format(time.time() - tic_alignment)) ref_transcript, hyp_transcript = [ sorted(transcripts.flatten(segments), key=transcripts.sort_key) for segments in [ref_segments, hyp_segments] ] if args.max_segment_duration: if ref: ref_segments = list( transcripts.segment_by_time(ref_transcript, args.max_segment_duration)) hyp_segments = list( transcripts.segment_by_ref(hyp_transcript, ref_segments)) else: hyp_segments = list( transcripts.segment_by_time(hyp_transcript, args.max_segment_duration)) ref_segments = [[] for _ in hyp_segments] #### HACK for diarization elif args.ref_transcript_path and args.join_transcript: audio_name_hack = audio_name.split('.')[0] #TODO: normalize ref field ref_segments = [[t] for t in sorted(transcripts.load( os.path.join(args.ref_transcript_path, audio_name_hack + '.json')), key=transcripts.sort_key)] hyp_segments = list( transcripts.segment_by_ref(hyp_transcript, ref_segments, set_speaker=True, soft=False)) #### END OF HACK has_ref = bool(transcripts.join(ref=transcripts.flatten(ref_segments))) transcript = [] for hyp_transcript, ref_transcript in zip(hyp_segments, ref_segments): hyp, ref = transcripts.join(hyp=hyp_transcript), transcripts.join( ref=ref_transcript) transcript.append( dict(audio_path=audio_path, ref=ref, hyp=hyp, speaker_name=transcripts.speaker_name(ref=ref_transcript, hyp=hyp_transcript), words=metrics.align_words( *metrics.align_strings(hyp=hyp, ref=ref)) if args.align_words else [], words_ref=ref_transcript, words_hyp=hyp_transcript, **transcripts.summary(hyp_transcript), **(dict(cer=metrics.cer(hyp=hyp, ref=ref)) if has_ref else {}))) transcripts.collect_speaker_names(transcript, set_speaker_data=True, num_speakers=2) filtered_transcript = list( transcripts.prune(transcript, align_boundary_words=args.align_boundary_words, cer=args.prune_cer, duration=args.prune_duration, gap=args.prune_gap, allowed_unk_count=args.prune_unk, num_speakers=args.prune_num_speakers)) print('Filtered segments:', len(filtered_transcript), 'out of', len(transcript)) if args.output_json: transcript_path = os.path.join(args.output_path, audio_name + '.json') print(transcripts.save(transcript_path, filtered_transcript)) if args.output_html: transcript_path = os.path.join(args.output_path, audio_name + '.html') print( vis.transcript(transcript_path, args.sample_rate, args.mono, transcript, filtered_transcript)) if args.output_txt: transcript_path = os.path.join(args.output_path, audio_name + '.txt') with open(transcript_path, 'w') as f: f.write(' '.join(t['hyp'].strip() for t in filtered_transcript)) print(transcript_path) if args.output_csv: assert len({t['audio_path'] for t in filtered_transcript}) == 1 audio_path = filtered_transcript[0]['audio_path'] hyp = ' '.join(t['hyp'].strip() for t in filtered_transcript) begin = min(t['begin'] for t in filtered_transcript) end = max(t['end'] for t in filtered_transcript) csv_lines.append( csv_sep.join([audio_path, hyp, str(begin), str(end)])) if args.logits: logits_file_path = os.path.join(args.output_path, audio_name + '.pt') if args.logits_crop: begin_end = [ dict( zip(['begin', 'end'], [ t['begin'] + c / float(o) * (t['end'] - t['begin']) for c in args.logits_crop ])) for o, t in zip(olen, begin_end) ] logits_crop = [slice(*args.logits_crop) for o in olen] else: logits_crop = [slice(int(o)) for o in olen] # TODO: filter ref / hyp by channel? torch.save([ dict(audio_path=audio_path, logits=l[..., logits_crop[i]], **begin_end[i], ref=ref, hyp=hyp) for i, l in enumerate(logits.cpu()) ], logits_file_path) print(logits_file_path) print('Done: {:.02f} sec\n'.format(time.time() - tic)) if args.output_csv: transcript_path = os.path.join(args.output_path, 'transcripts.csv') with open(transcript_path, 'w') as f: f.write('\n'.join(csv_lines)) print(transcript_path)
def __init__( self, data_paths: typing.List[str], text_pipelines: typing.List[text_processing.ProcessingPipeline], sample_rate: int, mode: str = DEFAULT_MODE, frontend: typing.Optional[torch.nn.Module] = None, speaker_names: typing.Optional[typing.List[str]] = None, max_audio_file_size: typing.Optional[float] = None, #bytes min_duration: typing.Optional[float] = None, max_duration: typing.Optional[float] = None, max_num_channels: int = 2, mono: bool = True, audio_dtype: str = 'float32', time_padding_multiple: int = 1, audio_backend: typing.Optional[str] = None, exclude: typing.Optional[typing.Set] = None, bucket_fn: typing.Callable[[typing.List[typing.Dict]], int] = lambda transcript: 0, pop_meta: bool = False, string_array_encoding: str = 'utf_16_le', _print: typing.Callable = print, debug_short_long_records_features_from_whole_normalized_signal: bool = False, duration_from_transcripts: bool = False, ): self.debug_short_long_records_features_from_whole_normalized_signal = debug_short_long_records_features_from_whole_normalized_signal self.mode = mode self.min_duration = min_duration self.max_duration = max_duration self.max_audio_file_size = max_audio_file_size self.text_pipelines = text_pipelines self.frontend = frontend self.sample_rate = sample_rate self.time_padding_multiple = time_padding_multiple self.mono = mono self.audio_backend = audio_backend self.audio_dtype = audio_dtype data_paths = data_paths if isinstance(data_paths, list) else [data_paths] data_paths_ = [] for data_path in data_paths: if os.path.isdir(data_path): data_paths_.extend( os.path.join(data_path, filename) for filename in filter( audio.is_audio, os.listdir(data_path))) else: data_paths_.append(data_path) data_paths = data_paths_ tic = time.time() segments = [] for path in data_paths: if audio.is_audio(path): assert self.mono or self.mode != AudioTextDataset.DEFAULT_MODE, 'Only mono audio files allowed as dataset input in default mode' if self.mono: transcript = [ dict(audio_path=path, channel=transcripts.channel_missing) ] else: transcript = [ dict(audio_path=path, channel=c) for c in range(max_num_channels) ] else: transcript = transcripts.load(path) segments.extend(transcript) _print('Dataset reading time: ', time.time() - tic) tic = time.time() # get_or_else required because dictionary could contain None values which we want to replace. # dict.get doesnt work in this case get_or_else = lambda dictionary, key, default: dictionary[ key] if dictionary.get(key) is not None else default for t in segments: t['ref'] = get_or_else(t, 'ref', transcripts.ref_missing) t['begin'] = get_or_else(t, 'begin', transcripts.time_missing) t['end'] = get_or_else(t, 'end', transcripts.time_missing) t['channel'] = get_or_else( t, 'channel', transcripts.channel_missing ) if not self.mono else transcripts.channel_missing transcripts.collect_speaker_names(segments, speaker_names=speaker_names or [], num_speakers=max_num_channels, set_speaker_data=True) buckets = [] grouped_segments = [] transcripts_len = [] speakers_len = [] if self.mode == AudioTextDataset.DEFAULT_MODE: groupped_transcripts = ((i, [t]) for i, t in enumerate(segments)) else: groupped_transcripts = itertools.groupby( sorted(segments, key=transcripts.group_key), transcripts.group_key) for group_key, transcript in groupped_transcripts: transcript = sorted(transcript, key=transcripts.sort_key) if self.mode == AudioTextDataset.BATCHED_CHANNELS_MODE: transcript = transcripts.join_transcript( transcript, self.mono, duration_from_transcripts=duration_from_transcripts) if exclude is not None: allowed_audio_names = set( transcripts.audio_name(t) for t in transcript if transcripts.audio_name(t) not in exclude) else: allowed_audio_names = None transcript = transcripts.prune( transcript, allowed_audio_names=allowed_audio_names, duration=( min_duration if min_duration is not None else 0.0, max_duration if max_duration is not None else 24.0 * 3600, ), #24h max_audio_file_size=max_audio_file_size) transcript = list(transcript) for t in transcript: t['example_id'] = AudioTextDataset.get_example_id(t) if len(transcript) == 0: continue bucket = bucket_fn(transcript) for t in transcript: t['bucket'] = bucket speakers_len.append( len(t['speaker']) if ( isinstance(t['speaker'], list)) else 1) buckets.append(bucket) grouped_segments.extend(transcript) transcripts_len.append(len(transcript)) _print('Dataset construction time: ', time.time() - tic) tic = time.time() self.bucket = torch.tensor(buckets, dtype=torch.short) self.audio_path = utils.TensorBackedStringArray( [t['audio_path'] for t in grouped_segments], encoding=string_array_encoding) self.ref = utils.TensorBackedStringArray( [t['ref'] for t in grouped_segments], encoding=string_array_encoding) self.begin = torch.tensor([t['begin'] for t in grouped_segments], dtype=torch.float64) self.end = torch.tensor([t['end'] for t in grouped_segments], dtype=torch.float64) self.channel = torch.tensor([t['channel'] for t in grouped_segments], dtype=torch.int8) self.example_id = utils.TensorBackedStringArray( [t['example_id'] for t in grouped_segments], encoding=string_array_encoding) if self.mode == AudioTextDataset.BATCHED_CHANNELS_MODE: self.speaker = torch.tensor([ speaker for t in grouped_segments for speaker in t['speaker'] ], dtype=torch.int64) else: self.speaker = torch.tensor( [t['speaker'] for t in grouped_segments], dtype=torch.int64) self.speaker_len = torch.tensor(speakers_len, dtype=torch.int16) self.transcript_cumlen = torch.tensor(transcripts_len, dtype=torch.int16).cumsum( dim=0, dtype=torch.int64) if pop_meta: self.meta = {} else: self.meta = {t['example_id']: t for t in grouped_segments} _print('Dataset tensors creation time: ', time.time() - tic)
def main(args): utils.enable_jit_fusion() assert args.output_json or args.output_html or args.output_txt or args.output_csv, \ 'at least one of the output formats must be provided' os.makedirs(args.output_path, exist_ok=True) data_paths = [ p for f in args.input_path for p in ([os.path.join(f, g) for g in os.listdir(f)] if os.path.isdir(f) else [f]) if os.path.isfile(p) and any(map(p.endswith, args.ext)) ] + [ p for p in args.input_path if any(map(p.endswith, ['.json', '.json.gz'])) ] exclude = set([ os.path.splitext(basename)[0] for basename in os.listdir(args.output_path) if basename.endswith('.json') ] if args.skip_processed else []) data_paths = [ path for path in data_paths if os.path.basename(path) not in exclude ] labels, frontend, model, decoder = setup(args) val_dataset = datasets.AudioTextDataset( data_paths, [labels], args.sample_rate, frontend=None, segmented=True, mono=args.mono, time_padding_multiple=args.batch_time_padding_multiple, audio_backend=args.audio_backend, exclude=exclude, max_duration=args.transcribe_first_n_sec, join_transcript=args.join_transcript, string_array_encoding=args.dataset_string_array_encoding) num_examples = len(val_dataset) print('Examples count: ', num_examples) val_data_loader = torch.utils.data.DataLoader( val_dataset, batch_size=None, collate_fn=val_dataset.collate_fn, num_workers=args.num_workers) csv_sep = dict(tab='\t', comma=',')[args.csv_sep] output_lines = [] # only used if args.output_csv is True oom_handler = utils.OomHandler(max_retries=args.oom_retries) for i, (meta, s, x, xlen, y, ylen) in enumerate(val_data_loader): print(f'Processing: {i}/{num_examples}') meta = [val_dataset.meta.get(m['example_id']) for m in meta] audio_path = meta[0]['audio_path'] if x.numel() == 0: print(f'Skipping empty [{audio_path}].') continue begin = meta[0]['begin'] end = meta[0]['end'] audio_name = transcripts.audio_name(audio_path) try: tic = time.time() y, ylen = y.to(args.device), ylen.to(args.device) log_probs, olen = model( x.squeeze(1).to(args.device), xlen.to(args.device)) #speech = vad.detect_speech(x.squeeze(1), args.sample_rate, args.window_size, aggressiveness = args.vad, window_size_dilate = args.window_size_dilate) #speech = vad.upsample(speech, log_probs) #log_probs.masked_fill_(models.silence_space_mask(log_probs, speech, space_idx = labels.space_idx, blank_idx = labels.blank_idx), float('-inf')) decoded = decoder.decode(log_probs, olen) print('Input:', audio_name) print('Input time steps:', log_probs.shape[-1], '| target time steps:', y.shape[-1]) print( 'Time: audio {audio:.02f} sec | processing {processing:.02f} sec' .format(audio=sum( transcripts.compute_duration(t) for t in meta), processing=time.time() - tic)) ts = (x.shape[-1] / args.sample_rate) * torch.linspace( 0, 1, steps=log_probs.shape[-1]).unsqueeze(0) + torch.FloatTensor( [t['begin'] for t in meta]).unsqueeze(1) channel = [t['channel'] for t in meta] speaker = [t['speaker'] for t in meta] ref_segments = [[ dict(channel=channel[i], begin=meta[i]['begin'], end=meta[i]['end'], ref=labels.decode(y[i, 0, :ylen[i]].tolist())) ] for i in range(len(decoded))] hyp_segments = [ labels.decode(decoded[i], ts[i], channel=channel[i], replace_blank=True, replace_blank_series=args.replace_blank_series, replace_repeat=True, replace_space=False, speaker=speaker[i] if isinstance( speaker[i], str) else None) for i in range(len(decoded)) ] ref, hyp = '\n'.join( transcripts.join(ref=r) for r in ref_segments).strip(), '\n'.join( transcripts.join(hyp=h) for h in hyp_segments).strip() if args.verbose: print('HYP:', hyp) print('CER: {cer:.02%}'.format(cer=metrics.cer(hyp=hyp, ref=ref))) tic_alignment = time.time() if args.align and y.numel() > 0: #if ref_full:# and not ref: # #assert len(set(t['channel'] for t in meta)) == 1 or all(t['type'] != 'channel' for t in meta) # #TODO: add space at the end # channel = torch.ByteTensor(channel).repeat_interleave(log_probs.shape[-1]).reshape(1, -1) # ts = ts.reshape(1, -1) # log_probs = log_probs.transpose(0, 1).unsqueeze(0).flatten(start_dim = -2) # olen = torch.tensor([log_probs.shape[-1]], device = log_probs.device, dtype = torch.long) # y = y_full[None, None, :].to(y.device) # ylen = torch.tensor([[y.shape[-1]]], device = log_probs.device, dtype = torch.long) # segments = [([], sum([h for r, h in segments], []))] alignment = ctc.alignment( log_probs.permute(2, 0, 1), y.squeeze(1), olen, ylen.squeeze(1), blank=labels.blank_idx, pack_backpointers=args.pack_backpointers) ref_segments = [ labels.decode(y[i, 0, :ylen[i]].tolist(), ts[i], alignment[i], channel=channel[i], speaker=speaker[i], key='ref', speakers=val_dataset.speakers) for i in range(len(decoded)) ] oom_handler.reset() except: if oom_handler.try_recover(model.parameters()): print(f'Skipping {i} / {num_examples}') continue else: raise print('Alignment time: {:.02f} sec'.format(time.time() - tic_alignment)) if args.max_segment_duration: ref_transcript, hyp_transcript = [ list(sorted(sum(segments, []), key=transcripts.sort_key)) for segments in [ref_segments, hyp_segments] ] if ref: ref_segments = list( transcripts.segment(ref_transcript, args.max_segment_duration)) hyp_segments = list( transcripts.segment(hyp_transcript, ref_segments)) else: hyp_segments = list( transcripts.segment(hyp_transcript, args.max_segment_duration)) ref_segments = [[] for _ in hyp_segments] transcript = [ dict(audio_path=audio_path, ref=ref, hyp=hyp, speaker=transcripts.speaker(ref=ref_transcript, hyp=hyp_transcript), cer=metrics.cer(hyp=hyp, ref=ref), words=metrics.align_words(hyp=hyp, ref=ref)[-1] if args.align_words else [], alignment=dict(ref=ref_transcript, hyp=hyp_transcript), **transcripts.summary(hyp_transcript)) for ref_transcript, hyp_transcript in zip(ref_segments, hyp_segments) for ref, hyp in [(transcripts.join(ref=ref_transcript), transcripts.join(hyp=hyp_transcript))] ] filtered_transcript = list( transcripts.prune(transcript, align_boundary_words=args.align_boundary_words, cer=args.cer, duration=args.duration, gap=args.gap, unk=args.unk, num_speakers=args.num_speakers)) print('Filtered segments:', len(filtered_transcript), 'out of', len(transcript)) if args.output_json: transcript_path = os.path.join(args.output_path, audio_name + '.json') print(transcript_path) with open(transcript_path, 'w') as f: json.dump(filtered_transcript, f, ensure_ascii=False, sort_keys=True, indent=2) if args.output_html: transcript_path = os.path.join(args.output_path, audio_name + '.html') print(transcript_path) vis.transcript(transcript_path, args.sample_rate, args.mono, transcript, filtered_transcript) if args.output_txt: transcript_path = os.path.join(args.output_path, audio_name + '.txt') print(transcript_path) with open(transcript_path, 'w') as f: f.write(hyp) if args.output_csv: output_lines.append( csv_sep.join((audio_path, hyp, str(begin), str(end))) + '\n') print('Done: {:.02f} sec\n'.format(time.time() - tic)) if args.output_csv: with open(os.path.join(args.output_path, 'transcripts.csv'), 'w') as f: f.writelines(output_lines)
def errors(input_path, include=[], exclude=[], audio=False, output_path=None, sortdesc=None, topk=None, duration=None, cer=None, wer=None, mer=None, filter_transcripts=None, strip_audio_path_prefix=''): include, exclude = (set( sum([ list(map(transcripts.audio_name, json.load(open(file_path)))) if file_path.endswith('.json') else open(file_path).read().splitlines() for file_path in clude ], [])) for clude in [include, exclude]) read_transcript = lambda path: list( filter( lambda r: (not include or r['audio_name'] in include) and (not exclude or r['audio_name'] not in exclude), json.load(open(path)) if isinstance(path, str) else path)) if path is not None else [] ours, theirs = list( transcripts.prune(read_transcript(input_path[0]), duration=duration, cer=cer, wer=wer, mer=mer)), [{ r['audio_name']: r for r in read_transcript(transcript) } for transcript in input_path[1:]] if filter_transcripts is None: if sortdesc is not None: filter_transcripts = lambda cat: list( sorted(cat, key=lambda utt: utt[0][sortdesc], reverse=True)) else: filter_transcripts = lambda cat: cat cat = filter_transcripts([ [a] + list(filter(None, [t.get(a['audio_name'], None) for t in theirs])) for a in ours ])[slice(topk)] cat_by_labels = collections.defaultdict(list) for c in cat: transcripts_by_labels = collections.defaultdict(list) for transcript in c: transcripts_by_labels[transcript['labels_name']] += c for labels_name, grouped_transcripts in transcripts_by_labels.items(): cat_by_labels[labels_name] += grouped_transcripts # TODO: add sorting https://stackoverflow.com/questions/14267781/sorting-html-table-with-javascript html_path = output_path or (input_path[0] + '.html') f = open(html_path, 'w') f.write( '<html><meta charset="utf-8"><style> table{border-collapse:collapse; width: 100%;} audio {width:100%} .br{border-right:2px black solid} tr.first>td {border-top: 1px solid black} tr.any>td {border-top: 1px dashed black} .nowrap{white-space:nowrap} th.col{width:80px}</style>' ) f.write( '<body><table><tr><th></th><th class="col">cer_easy</th><th class="col">cer</th><th class="col">wer_easy</th><th class="col">wer</th><th class="col">mer</th><th></th></tr>' ) f.write('<tr><td><strong>averages<strong></td></tr>') f.write('\n'.join( '<tr><td class="br">{input_name}</td><td>{cer_easy:.02%}</td><td>{cer:.02%}</td><td>{wer_easy:.02%}</td><td>{wer:.02%}</td><td>{mer:.02%}</td></tr>' .format( input_name=os.path.basename(input_path[i]), cer=metrics.nanmean(c, 'cer'), wer=metrics.nanmean(c, 'wer'), mer=metrics.nanmean(c, 'mer'), cer_easy=metrics.nanmean(c, 'words_easy_errors_easy.cer_pseudo'), wer_easy=metrics.nanmean(c, 'words_easy_errors_easy.wer_pseudo'), ) for i, c in enumerate(zip(*cat)))) if len(cat_by_labels.keys()) > 1: for labels_name, labels_transcripts in cat_by_labels.items(): f.write( f'<tr><td><strong>averages ({labels_name})<strong></td></tr>') f.write('\n'.join( '<tr><td class="br">{input_name}</td><td>{cer_easy:.02%}</td><td>{cer:.02%}</td><td>{wer_easy:.02%}</td><td>{wer:.02%}</td><td>{mer:.02%}</td></tr>' .format( input_name=os.path.basename(input_path[i]), cer=metrics.nanmean(c, 'cer'), wer=metrics.nanmean(c, 'wer'), mer=metrics.nanmean(c, 'mer_wordwise'), cer_easy=metrics.nanmean( c, 'words_easy_errors_easy.cer_pseudo'), wer_easy=metrics.nanmean( c, 'words_easy_errors_easy.wer_pseudo'), ) for i, c in enumerate(zip(*labels_transcripts)))) f.write('<tr><td> </td></tr>') f.write('\n'.join( f'''<tr class="first"><td colspan="6">''' + (f'<audio controls src="{audio_data_uri(utt[0]["audio_path"][len(strip_audio_path_prefix):])}"></audio>' if audio else '') + f'<div class="nowrap">{utt[0]["audio_name"]}</div></td><td>{word_alignment(utt[0], ref = True, flat = True)}</td><td>{word_alignment(utt[0], ref = True, flat = True)}</td></tr>' + '\n'.join( '<tr class="any"><td class="br">{audio_name}</td><td>{cer_easy:.02%}</td><td>{cer:.02%}</td><td>{wer_easy:.02%}</td><td>{wer:.02%}</td><td class="br">{mer:.02%}</td><td>{word_alignment}</td><td>{word_alignment_flat}</td></tr>' .format(audio_name=transcripts.audio_name(input_path[i]), cer_easy=a.get("words_easy_errors_easy", {}).get( "cer_pseudo", -1), cer=a.get("cer", 1), wer_easy=a.get("words_easy_errors_easy", {}).get( "wer_pseudo", -1), wer=a.get("wer", 1), mer=a.get("mer_wordwise", 1), word_alignment=word_alignment(a.get('words', [])), word_alignment_flat=word_alignment(a, hyp=True, flat=True)) for i, a in enumerate(utt)) for utt in cat)) f.write('</table></body></html>') print(html_path)