datafolder = sys.argv[-1] appendix = sys.argv[-2] os.environ.keys() ii = int(os.environ['SLURM_ARRAY_TASK_ID']) print('ii = %d' % (ii)) # null hypothesis run index import numpy as np data = np.load(datafolder + appendix + '/param.npy', allow_pickle=True) param = data.item() for key, val in param.items(): exec(key + '=val') runs = 400 # runjob series number STA = np.zeros(L) for kk in range(1, runs + 1): datafile = datafolder + appendix + '/Series' + str( kk) + '/STA_null_run%d.npy' % (ii) data = np.load(datafile, allow_pickle=True) dic = data.item() STA_tmp = dic['STA'] STA = STA + STA_tmp STA = STA / float(runs) from transferit import gain, firing_rate_estimate fr_estimated = firing_rate_estimate(range(1, runs + 1), datafolder, appendix) [f, gain_filt] = gain(fr_estimated, STA, datafolder, appendix) transferdata = {'f': f, 'gain': gain_filt} np.save( datafolder + appendix + '/nullhypothesis/transferdata_nullhypothesis_run%d' % (ii), transferdata)
datafolder = sys.argv[-1] stim_type = sys.argv[-2] os.environ.keys() ii = int(os.environ['SLURM_ARRAY_TASK_ID']) print('ii = %d' % (ii)) for tau in (50, ): for posNa in (47, ): for fr in (5192, ): if stim_type == 'OU': from transferit import STA_average, gain, firing_rate_estimate appendix = 'tau%sfr%sposNa%s_spikedistance50_v3' % (tau, fr, posNa) # Randomly select STA with replacement. List = [randint(1, runs) for i in range(runs)] fr_estimated = firing_rate_estimate(List, datafolder, appendix) print('Firing rate is estimated to be %sHz.' % (fr_estimated)) STA = STA_average(List, datafolder, appendix) # averaged STA [f, gain_filt] = gain(fr_estimated, STA, datafolder, appendix) transferdata = {'f': f, 'gain': gain_filt} if stim_type == 'step': amplitude = 0.1 appendix = 'tau%sfr%sposNa%samplitude%s' % (tau, fr, posNa, amplitude) from transferit import gain_step, firing_rate_step List = [randint(1, runs) for i in range(runs)] print('length of list is %d' % (len(List))) [f, gain, firing_rate_smooth] = gain_step(List, datafolder, appendix, tau, amplitude)