Exemple #1
0
def fourierMult(fvolume, filter, human=False):
    from pytom.tompy.transform import fourier_full2reduced

    if human:
        filter = xp.fft.fftshift(filter)
        filter = fourier_full2reduced(filter)
        fvolume = fourier_full2reduced(fvolume)

    fvolume *= filter

    return fvolume
Exemple #2
0
    def apply(self, data, rotation=None):
        """
        @param rotation: apply rotation to the wedge first
        """
        # if no missing wedge
        if self.start_ang == -90 and self.end_ang == 90:
            return data

        if self._volume is not None and np.array_equal(self._volume_shape,
                                                       data.shape):
            pass
        else:
            self._create_wedge_volume(data.shape)

        if rotation is not None:  # rotate the wedge first
            assert len(rotation) == 3
            from pytom.tompy.transform import rotate3d, fourier_reduced2full, fourier_full2reduced, fftshift, ifftshift
            isodd = self._volume_shape[2] % 2
            filter_vol = fftshift(fourier_reduced2full(self._volume, isodd))
            filter_vol = rotate3d(filter_vol,
                                  rotation[0],
                                  rotation[1],
                                  rotation[2],
                                  order=1)  # linear interp!
            filter_vol = fourier_full2reduced(ifftshift(filter_vol))
        else:
            filter_vol = self._volume

        from pytom.tompy.transform import fourier_filter
        res = fourier_filter(data, filter_vol, False)

        return res
Exemple #3
0
    def set_wedge_volume(self, wedge_vol, half=True, isodd=False):
        if half:
            self._volume = wedge_vol

            # human understandable version with 0-freq in the center
            from transform import fourier_reduced2full, fftshift
            self._whole_volume = fftshift(
                fourier_reduced2full(self._volume, isodd))
        else:
            self._whole_volume = wedge_vol

            from transform import fourier_full2reduced, ifftshift
            self._volume = fourier_full2reduced(ifftshift(self._whole_volume))
Exemple #4
0
    def apply(self, data, rotation=None):
        if rotation is not None:  # rotate the wedge first
            assert len(rotation) == 3
            from transform import rotate3d, fourier_full2reduced, ifftshift
            filter_vol = rotate3d(self._whole_volume, rotation[0], rotation[1],
                                  rotation[2])
            filter_vol = fourier_full2reduced(ifftshift(filter_vol))
        else:
            filter_vol = self._volume

        from transform import fourier_filter
        res = fourier_filter(data, filter_vol, False)

        return res
Exemple #5
0
    def _create_wedge_volume(self, size):
        from transform import fftshift, fourier_full2reduced
        # if no missing wedge
        if self.start_ang == -90 and self.end_ang == 90:
            filter_vol = np.ones(size)
            self._volume = fourier_full2reduced(filter_vol)
            self._volume_shape = size
            return

        filter_vol = np.ones(size)
        x, z = scipy.mgrid[0.:size[0], 0.:size[2]]
        x -= size[0] / 2
        ind = np.where(x)  # find the non-zeros
        z -= size[2] / 2

        angles = np.zeros(z.shape)
        angles[ind] = np.arctan(z[ind] / x[ind]) * 180 / np.pi

        angles = np.reshape(angles, (size[0], 1, size[2]))
        angles = np.repeat(angles, size[1], axis=1)

        filter_vol[angles > -self.start_ang] = 0
        filter_vol[angles < -self.end_ang] = 0

        filter_vol[size[0] / 2, :, :] = 0
        filter_vol[size[0] / 2, :, size[2] / 2] = 1

        # create a sphere and multiple it with the wedge
        from tools import create_sphere
        mask = create_sphere(size)
        filter_vol *= mask

        # shift and cut in half
        filter_vol = fftshift(filter_vol)
        self._volume = fourier_full2reduced(filter_vol)

        self._volume_shape = size
Exemple #6
0
def rotateWeighting(weighting, rotation, mask=None, binarize=False):
    """
    rotateWeighting: Rotates a frequency weighting volume around the center. If the volume provided is reduced complex, it will be rescaled to full size, ftshifted, rotated, iftshifted and scaled back to reduced size.
    @param weighting: A weighting volume in reduced complex convention
    @type weighting: cupy or numpy array
    @param rotation: rotation angles in zxz order
    @type rotation: list
    @param mask:=None is there a rotation mask? A mask with all = 1 will be generated otherwise. Such mask should be \
        provided anyway.
    @type mask: cupy or numpy ndarray
    @return: weight as reduced complex volume
    @rtype: L{pytom_volume.vol_comp}
    """
    from pytom_volume import vol, limit, vol_comp
    from pytom_volume import rotate
    from pytom.voltools import transform
    assert type(weighting) == vol or type(
        weighting
    ) == vol_comp, "rotateWeighting: input neither vol nor vol_comp"
    from pytom.tompy.transform import fourier_reduced2full, fourier_full2reduced

    weighting = fourier_reduced2full(weighting,
                                     isodd=weighting.shape[0] % 2 == 1)
    weighting = xp.fft.fftshift(weighting)

    weightingRotated = xp.zeros_like(weighting)

    transform(weighting,
              output=weightingRotated,
              rotation=rotation,
              rotation_order='rzxz',
              device=device,
              interpolation='filt_bspline')

    if not mask is None:
        weightingRotated *= mask

    weightingRotated = xp.fft.fftshift(weightingRotated)
    returnVolume = fourier_full2reduced(weightingRotated)

    if binarize:
        returnVolume[returnVolume < 0.5] = 0
        returnVolume[returnVolume >= 0.5] = 1

    return returnVolume