def loader(): rankings_country_code_population = transform.transformer() ######################################################## # load data to postgres ######################################################## #create database connection engine = create_engine( f'postgresql://{config.postgres_conn_str}{config.upload_database}') #insert df into postgres rankings_country_code_population.to_sql(name='country_rankings', con=engine, if_exists='replace', index=False) ######################################################## # load data to mongodb ######################################################## # Initialize PyMongo to work with MongoDBs conn = 'mongodb://localhost:27017' client = pymongo.MongoClient(conn) # Define database and collection db = client.etl_project collection = db.country_rankings doc = rankings_country_code_population.set_index('country').to_dict() results = collection.find() doc_id = {} for i in results: doc_id['_id'] = str(i.get('_id')) collection.replace_one(doc_id, doc, upsert=True)
def proxy_query(self, flow, url, query): parts = urlparse.urlparse(url) # Get resource type - first try to see whether there is type= URL option, # if there is not, try to get it from file extension if parts.scheme != "http": raise ResourceError("Only HTTP URLs are supported", "Data proxy does not support %s URLs" % parts.scheme) resource_type = query.getfirst("type") if not resource_type: resource_type = os.path.splitext(parts.path)[1] if not resource_type: raise RequestError( "Could not determine the resource type", "If file has no type extension, specify file type in type= option", ) resource_type = re.sub(r"^\.", "", resource_type.lower()) try: transformer = transform.transformer(resource_type, flow, url, query) except Exception, e: raise RequestError( "Resource type not supported", "Transformation of resource of type %s is not supported. Reason: %s" % (resource_type, e), )
def proxy_query(self, flow, url, query): parts = urlparse.urlparse(url) # Get resource type - first try to see whether there is type= URL option, # if there is not, try to get it from file extension if parts.scheme not in ['http', 'https']: raise ResourceError( 'Only HTTP URLs are supported', 'Data proxy does not support %s URLs' % parts.scheme) resource_type = query.getfirst("type") if not resource_type: resource_type = os.path.splitext(parts.path)[1] if not resource_type: raise RequestError( 'Could not determine the resource type', 'If file has no type extension, specify file type in type= option' ) resource_type = re.sub(r'^\.', '', resource_type.lower()) try: transformer = transform.transformer(resource_type, flow, url, query) except Exception, e: raise RequestError( 'Resource type not supported', 'Transformation of resource of type %s is not supported. Reason: %s' % (resource_type, e))
def transform_preprocessed_ndi_files(self,st): bad_list = [] for name in self.matched_list: pname = name[1]+"-preprocessed" processed_ndi_file = os.path.join(self.processed,pname) my_transform = tf.transformer(processed_ndi_file,st) if (my_transform.process_file()): my_transform.save_processed_file() else: bad_list.append(name) for val in bad_list: self.matched_list.remove(val) src = os.path.join(self.archive_good,val[1]) shutil.move(src,self.archive_bad) # clean up the failed ndi file and its matching pair from processed good to processed bad. return
def compile_file(f, name, c): base, ext = os.path.splitext(name) print 'read...' r = lisp_reader.reader(f) exp = r.read_all() if c.verbose: print '--- read ---' pp(exp) print 'transform...' t = transform.transformer(c) exp2 = t.go(exp) if c.verbose: print '--- transform ---' pp(exp2) w = nodes.walker(c) exp3 = w.go(exp2) print 'rename...' # alpha conversion c.var_dict = nodes.rename_variables(exp3, c) # find strongly connected components print 'call graph...' c.dep_graph = graph.build_dependency_graph(exp3) c.scc_graph, c.scc_map = graph.strongly(c.dep_graph) a = analyze.analyzer(c) exp4 = a.analyze(exp3) if c.verbose: print '--- analyzer ---' exp4.pprint() ic = byte_cps(c, verbose=c.verbose) exp5 = ic.go(exp4) if c.verbose: print '--- cps ---' cps.pretty_print(exp5) fo = open('%s.byc' % base, 'wb') num_regs = cps.the_register_allocator.max_reg b = compiler(fo, name, num_regs, c) b.go(exp5) fo.close()
def compile_file (f, name, c): base, ext = os.path.splitext (name) print 'read...' r = lisp_reader.reader (f) exp = r.read_all() if c.verbose: print '--- read ---' pp (exp) print 'transform...' t = transform.transformer (c) exp2 = t.go (exp) if c.verbose: print '--- transform ---' pp (exp2) w = nodes.walker (c) exp3 = w.go (exp2) print 'rename...' # alpha conversion c.var_dict = nodes.rename_variables (exp3, c) # find strongly connected components print 'call graph...' c.dep_graph = graph.build_dependency_graph (exp3) c.scc_graph, c.scc_map = graph.strongly (c.dep_graph) a = analyze.analyzer (c) exp4 = a.analyze (exp3) if c.verbose: print '--- analyzer ---' exp4.pprint() ic = byte_cps (c, verbose=c.verbose) exp5 = ic.go (exp4) if c.verbose: print '--- cps ---' cps.pretty_print (exp5) fo = open ('%s.byc' % base, 'wb') num_regs = cps.the_register_allocator.max_reg b = compiler (fo, name, num_regs, c) b.go (exp5) fo.close()
b_fc_loc1 = bias_variable([20]) initial = np.array([0.5, 0]) initial = initial.astype('float32') initial = initial.flatten() W_fc_loc2 = weight_variable([20, 2]) b_fc_loc2 = bias_variable([2]) b_fc_loc2 = tf.Variable(initial_value=initial, name='b_fc_loc2') h_fc_loc1 = tf.nn.tanh(tf.matmul(x_flat, W_fc_loc1) + b_fc_loc1) h_fc_loc1_drop = tf.nn.dropout(h_fc_loc1, keep_prob) h_fc_loc2 = tf.nn.tanh(tf.matmul(h_fc_loc1_drop, W_fc_loc2) + b_fc_loc2) out_size = (10, 4096) h_trans = transformer(x_trans, h_fc_loc2, out_size) h_flat = tf.reshape(h_trans, [-1, 10, 4096, 1]) # start cnn #filter_size = 3 filter_size = 5 n_filters_1 = 8 W_conv1 = weight_variable_cnn([filter_size, 1, 1, n_filters_1]) b_conv1 = bias_variable([n_filters_1]) h_conv1 = tf.nn.relu( tf.nn.conv2d( input=h_trans, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1) h_conv1_flat = tf.reshape(h_conv1, [-1, 10 * 4096 * n_filters_1])