Exemple #1
0
    args.machine = os.uname()[1]
    save_dic_to_json(args.__dict__, json_fn)

    start_epoch = 0

train_img_shape = tuple([int(x) for x in args.train_img_shape])

img_transform_list = [
    Scale(train_img_shape, Image.BILINEAR),
    ToTensor(),
    # Normalize([.485, .456, .406], [.229, .224, .225])
]

if args.augment:
    aug_list = [
        RandomRotation(),
        # RandomVerticalFlip(), # non-realistic
        RandomHorizontalFlip(),
        RandomSizedCrop()
    ]
    img_transform_list = aug_list + img_transform_list

img_transform = Compose(img_transform_list)

label_transform = Compose([
    Scale(train_img_shape, Image.NEAREST),
    ToLabel(),
    ReLabel(255, args.n_class - 1),
])

src_dataset = get_dataset(dataset_name=args.src_dataset,
Exemple #2
0
# Save param dic
if resume_flg:
    json_fn = os.path.join(args.outdir, "param-%s_resume.json" % model_name)
else:
    json_fn = os.path.join(outdir, "param-%s.json" % model_name)
check_if_done(json_fn)
save_dic_to_json(args.__dict__, json_fn)

train_img_shape = tuple([int(x) for x in args.train_img_shape])
img_transform_list = [
    Scale(train_img_shape, Image.BILINEAR),
    ToTensor(),
    Normalize([.485, .456, .406], [.229, .224, .225])
]
if args.augment:
    aug_list = [RandomRotation(), RandomHorizontalFlip(), RandomSizedCrop()]
    img_transform_list = aug_list + img_transform_list

img_transform = Compose(img_transform_list)

label_transform = Compose([
    Scale(train_img_shape, Image.NEAREST),
    ToLabel(),
    ReLabel(255,
            args.n_class - 1),  # Last Class is "Void" or "Background" class
])

src_dataset = get_dataset(dataset_name=args.src_dataset,
                          split=args.src_split,
                          img_transform=img_transform,
                          label_transform=label_transform,