def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): model = TFAlbertModel(config=config) # inputs = {'input_ids': input_ids, # 'attention_mask': input_mask, # 'token_type_ids': token_type_ids} # sequence_output, pooled_output = model(**inputs) inputs = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} sequence_output, pooled_output = model(inputs) inputs = [input_ids, input_mask] sequence_output, pooled_output = model(inputs) sequence_output, pooled_output = model(input_ids) result = { "sequence_output": sequence_output.numpy(), "pooled_output": pooled_output.numpy(), } self.parent.assertListEqual( list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]) self.parent.assertListEqual(list(result["pooled_output"].shape), [ self.batch_size, self.hidden_size])
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): model = TFAlbertModel(config=config) # inputs = {'input_ids': input_ids, # 'attention_mask': input_mask, # 'token_type_ids': token_type_ids} # sequence_output, pooled_output = model(**inputs) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def test_model_from_pretrained(self): cache_dir = "/tmp/transformers_test/" # for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in ['albert-base-uncased']: model = TFAlbertModel.from_pretrained( model_name, cache_dir=cache_dir) shutil.rmtree(cache_dir) self.assertIsNotNone(model)
def __init__(self, config, *inputs, **kwargs): super(TFAlbertForMultipleChoice, self).__init__(config, *inputs, **kwargs) self.albert = TFAlbertModel(config, name='albert') self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name='classifier')
def test_model_from_pretrained(self): for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFAlbertModel.from_pretrained(model_name) self.assertIsNotNone(model)
def test_model_from_pretrained(self): for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFAlbertModel.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)