Exemple #1
0
    def _build_word_embedding(self):
        self.bert_config = BertConfig.from_pretrained(self.config.bert_model_name)
        if self.config.pretrained_bert:
            bert_model = BertForPreTraining.from_pretrained(self.config.bert_model_name)
            self.word_embedding = bert_model.bert.embeddings
            self.pooler = bert_model.bert.pooler
            self.pooler.apply(self.init_weights)

        else:
            self.pooler = BertPooler(self.bert_config)
            self.word_embedding = BertEmbeddings(self.bert_config)
Exemple #2
0
 def __init__(self, model_name: str) -> None:
     super().__init__()
     config = BertConfig.from_pretrained(model_name)
     self.input_dim = config.hidden_size
     self.output_dim = config.vocab_size
     # TODO(mattg): It's possible that we could use some kind of cache like we have in
     # allennlp.modules.token_embedders.bert_token_embedder.PretrainedBertModel.  That way, we
     # would only load the BERT weights once.  Though, it's not clear how to do that here, as we
     # need to load `BertForMaskedLM`, not just `BertModel`...
     bert_model = BertForMaskedLM.from_pretrained(model_name)
     self.bert_lm_head = bert_model.cls
Exemple #3
0
params = {
    'tokenizer_config': {
        'type': 'bert-base-uncased',
        'params': {
            'do_lower_case': True
        }
    },
    'mask_probability': 0,
    'max_seq_length': 128
}
mmf_tok = MMFTokenizer(OmegaConf.create(params))
mmf_tok._tokenizer = BertTokenizer(vocab_file="vocabulary.txt")

config = BertConfig.from_pretrained('bert-large-uncased',
                                    num_labels=2,
                                    vocab_size=len(vocabulary),
                                    num_hidden_layers=3)
net = VisualBertModel(config, visual_embedding_dim=2048).cuda()

out_txt = mmf_tok({'text': report})

input_ids = torch.tensor(out_txt['input_ids']).unsqueeze(0)
input_mask = torch.tensor(out_txt['input_mask']).unsqueeze(0)
img = torch.zeros(1, 14, 2048)

out = net(input_ids=input_ids.cuda(),
          text_mask=input_mask.cuda(),
          visual_embeddings=img.cuda())

print(net.config.add_cross_attention)
print(out.keys())