def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ serve_parser = parser.add_parser( "serve", help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task", type=str, choices=SUPPORTED_TASKS.keys(), help="The task to run the pipeline on" ) serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.") serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.") serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers") serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.") serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.") serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.") serve_parser.add_argument( "--device", type=int, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) serve_parser.set_defaults(func=serve_command_factory)
def register_subcommand(parser: ArgumentParser): run_parser = parser.add_parser("run", help="Run a pipeline through the CLI") run_parser.add_argument("--task", choices=SUPPORTED_TASKS.keys(), help="Task to run") run_parser.add_argument("--input", type=str, help="Path to the file to use for inference") run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.") run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.") run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.") run_parser.add_argument( "--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column", type=str, help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)", ) run_parser.add_argument( "--format", type=str, default="infer", choices=PipelineDataFormat.SUPPORTED_FORMATS, help="Input format to read from", ) run_parser.add_argument( "--device", type=int, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.") run_parser.set_defaults(func=run_command_factory)
def register_subcommand(parser: ArgumentParser): run_parser = parser.add_parser('run', help="Run a pipeline through the CLI") run_parser.add_argument('--device', type=int, default=-1, help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)') run_parser.add_argument('--task', choices=SUPPORTED_TASKS.keys(), help='Task to run') run_parser.add_argument('--model', type=str, required=True, help='Name or path to the model to instantiate.') run_parser.add_argument('--tokenizer', type=str, help='Name of the tokenizer to use. (default: same as the model name)') run_parser.add_argument('--column', type=str, required=True, help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)') run_parser.add_argument('--format', type=str, default='infer', choices=PipelineDataFormat.SUPPORTED_FORMATS, help='Input format to read from') run_parser.add_argument('--input', type=str, required=True, help='Path to the file to use for inference') run_parser.add_argument('--output', type=str, required=True, help='Path to the file that will be used post to write results.') run_parser.add_argument('kwargs', nargs='*', help='Arguments to forward to the file format reader') run_parser.set_defaults(func=run_command_factory)
def test_load_default_pipelines_tf(self): import tensorflow as tf from transformers.pipelines import SUPPORTED_TASKS set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731 for task in SUPPORTED_TASKS.keys(): if task == "table-question-answering": # test table in seperate test due to more dependencies continue self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)
def test_load_default_pipelines_pt(self): import torch from transformers.pipelines import SUPPORTED_TASKS set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731 for task in SUPPORTED_TASKS.keys(): if task == "table-question-answering": # test table in seperate test due to more dependencies continue self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)
class PipelineCommonTests(unittest.TestCase): pipelines = SUPPORTED_TASKS.keys() @slow @require_tf def test_tf_defaults(self): # Test that pipelines can be correctly loaded without any argument for task in self.pipelines: with self.subTest(msg="Testing TF defaults with TF and {}".format(task)): pipeline(task, framework="tf") @slow @require_torch def test_pt_defaults(self): # Test that pipelines can be correctly loaded without any argument for task in self.pipelines: with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)): pipeline(task, framework="pt")
def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ serve_parser = parser.add_parser( 'serve', help= 'CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument('--task', type=str, choices=SUPPORTED_TASKS.keys(), help='The task to run the pipeline on') serve_parser.add_argument('--host', type=str, default='localhost', help='Interface the server will listen on.') serve_parser.add_argument('--port', type=int, default=8888, help='Port the serving will listen to.') serve_parser.add_argument( '--model', type=str, help='Model\'s name or path to stored model.') serve_parser.add_argument( '--config', type=str, help='Model\'s config name or path to stored model.') serve_parser.add_argument('--tokenizer', type=str, help='Tokenizer name to use.') serve_parser.add_argument( '--device', type=int, default=-1, help= 'Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' ) serve_parser.set_defaults(func=serve_command_factory)