Exemple #1
0
def evaluate(model: BertPreTrainedModel, iterator: DataLoader) -> float:
    model.eval()
    total = []
    for batch in tqdm(list(iterator), desc='eval'):
        with torch.no_grad():
            loss = model(**batch)[0]
        total += [loss.item()]
    model.train()
    return sum(total) / len(total)
Exemple #2
0
def train_epoch(model: BertPreTrainedModel, optimizer: torch.optim.Optimizer, iterator: DataLoader,
                args: TrainingArguments, num_epoch=0):
    model.train()
    train_loss = 0
    for step, batch in enumerate(tqdm(iterator, desc="train")):
        loss = model(**batch)[0]
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
        optimizer.step()
        model.zero_grad()
        train_loss += loss.item()
        if args.writer:
            args.writer.add_scalar('Loss/train', loss.item(), num_epoch * len(iterator) + step)
        if step > 0 and step % args.save_steps == 0:
            model.save_pretrained(args.output_dir)
            logger.info(f"epoch: {num_epoch + step / len(iterator)}")
            logger.info(f"train loss: {train_loss / args.save_steps}")
            train_loss = 0
    model.save_pretrained(args.output_dir)