def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = CanineModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, pytorch_dump_path): # Initialize PyTorch model config = CanineConfig() model = CanineModel(config) model.eval() print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_canine(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files tokenizer = CanineTokenizer() print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer.save_pretrained(pytorch_dump_path)