def convert_orig_tf1_checkpoint_to_pytorch(tf_checkpoint_path, convbert_config_file, pytorch_dump_path): conf = ConvBertConfig.from_json_file(convbert_config_file) model = ConvBertModel(conf) model = load_tf_weights_in_convbert(model, conf, tf_checkpoint_path) model.save_pretrained(pytorch_dump_path)
def test_inference_no_head(self): model = ConvBertModel.from_pretrained("YituTech/conv-bert-base") input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 6, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]]) self.assertTrue( torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
def test_inference_masked_lm(self): model = ConvBertModel.from_pretrained("YituTech/conv-bert-base") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] print(output[:, :3, :3]) expected_shape = torch.Size((1, 6, 768)) self.assertEqual(output.shape, expected_shape) # TODO Replace values below with what was printed above. expected_slice = torch.tensor( [[[-0.0348, -0.4686, -0.3064], [0.2264, -0.2699, -0.7423], [0.1032, -0.4501, -0.5828]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ConvBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def test_model_from_pretrained(self): for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ConvBertModel.from_pretrained(model_name) self.assertIsNotNone(model)