def create_and_check_question_encoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DPRQuestionEncoder(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def test_init_changed_config(self): config = self.model_tester.prepare_config_and_inputs()[0] model = DPRQuestionEncoder(config=config) model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = DPRQuestionEncoder.from_pretrained(tmp_dirname, projection_dim=512) self.assertIsNotNone(model)
def create_and_check_dpr_question_encoder(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): model = DPRQuestionEncoder(config=config) model.to(torch_device) model.eval() embeddings = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0] embeddings = model(input_ids, token_type_ids=token_type_ids)[0] embeddings = model(input_ids)[0] result = { "embeddings": embeddings, } self.parent.assertListEqual( list(result["embeddings"].size()), [self.batch_size, self.projection_dim or self.hidden_size])