Exemple #1
0
 def create_and_check_model_as_decoder(
     self,
     config,
     input_ids,
     token_type_ids,
     input_mask,
     sequence_labels,
     token_labels,
     choice_labels,
     encoder_hidden_states,
     encoder_attention_mask,
 ):
     config.add_cross_attention = True
     model = RobertaModel(config)
     model.to(torch_device)
     model.eval()
     result = model(
         input_ids,
         attention_mask=input_mask,
         token_type_ids=token_type_ids,
         encoder_hidden_states=encoder_hidden_states,
         encoder_attention_mask=encoder_attention_mask,
     )
     result = model(
         input_ids,
         attention_mask=input_mask,
         token_type_ids=token_type_ids,
         encoder_hidden_states=encoder_hidden_states,
     )
     result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
     self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
     self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
    def __init__(
        self,
        pretrained_model_name=None,
        config_filename=None,
        vocab_size=None,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        max_position_embeddings=512,
    ):
        super().__init__()

        # Check that only one of pretrained_model_name, config_filename, and
        # vocab_size was passed in
        total = 0
        if pretrained_model_name is not None:
            total += 1
        if config_filename is not None:
            total += 1
        if vocab_size is not None:
            total += 1

        if total != 1:
            raise ValueError(
                "Only one of pretrained_model_name, vocab_size, "
                + "or config_filename should be passed into the "
                + "ROBERTA constructor."
            )

        # TK: The following code checks the same once again.
        if vocab_size is not None:
            config = RobertaConfig(
                vocab_size_or_config_json_file=vocab_size,
                vocab_size=vocab_size,
                hidden_size=hidden_size,
                num_hidden_layers=num_hidden_layers,
                num_attention_heads=num_attention_heads,
                intermediate_size=intermediate_size,
                hidden_act=hidden_act,
                max_position_embeddings=max_position_embeddings,
            )
            model = RobertaModel(config)
        elif pretrained_model_name is not None:
            model = RobertaModel.from_pretrained(pretrained_model_name)
        elif config_filename is not None:
            config = RobertaConfig.from_json_file(config_filename)
            model = RobertaModel(config)
        else:
            raise ValueError(
                "Either pretrained_model_name or vocab_size must" + " be passed into the ROBERTA constructor"
            )

        model.to(self._device)

        self.add_module("roberta", model)
        self.config = model.config
        self._hidden_size = model.config.hidden_size
    def create_and_check_roberta_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Exemple #4
0
def get_roberta_model():

    # Initializing a RoBERTa configuration
    configuration = RobertaConfig()

    # Initializing a model from the configuration
    Roberta_Model = RobertaModel(configuration).from_pretrained("roberta-base")
    Roberta_Model.to(device)

    # Accessing the model configuration
    configuration = Roberta_Model.config

    #get the Roberta Tokenizer
    tokenizer = RobertaTokenizer.from_pretrained('roberta-base')

    return Roberta_Model, tokenizer, configuration
Exemple #5
0
        def create_and_check_roberta_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels,
                                           token_labels, choice_labels):
            model = RobertaModel(config=config)
            model.to(torch_device)
            model.eval()
            sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output,
                "pooled_output": pooled_output,
            }
            self.parent.assertListEqual(
                list(result["sequence_output"].size()),
                [self.batch_size, self.seq_length, self.hidden_size])
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])