def create_and_check_model(self, config, pixel_values, labels):
        model = SwinModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
Exemple #2
0
    def create_and_check_model(self, config, pixel_values, labels):
        model = SwinModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        num_features = int(config.embed_dim * 2**(len(config.depths) - 1))

        self.parent.assertEqual(result.last_hidden_state.shape,
                                (self.batch_size, num_features))
    def create_and_check_model(self, config, pixel_values, labels):
        model = SwinModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # since the model we're testing only consists of a single layer, expected_seq_len = number of patches
        expected_seq_len = (config.image_size // config.patch_size) ** 2
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))