def test_TFOpenAIGPTModel(self):
     from transformers import OpenAIGPTConfig, TFOpenAIGPTModel
     keras.backend.clear_session()
     # pretrained_weights = 'openai-gpt'
     tokenizer_file = 'openai_openai-gpt.pickle'
     tokenizer = self._get_tokenzier(tokenizer_file)
     text, inputs, inputs_onnx = self._prepare_inputs(tokenizer)
     config = OpenAIGPTConfig()
     model = TFOpenAIGPTModel(config)
     predictions = model.predict(inputs)
     onnx_model = keras2onnx.convert_keras(model, model.name)
     self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, inputs_onnx, predictions, self.model_files))
Exemple #2
0
    def __init__(
            self,
            reduce_output='sum',
            pretrained_model_name_or_path='openai-gpt',
            trainable=True,
            num_tokens=None,
            **kwargs
    ):
        super(GPTEncoder, self).__init__()
        try:
            from transformers import TFOpenAIGPTModel
        except ModuleNotFoundError:
            logger.error(
                ' transformers is not installed. '
                'In order to install all text feature dependencies run '
                'pip install ludwig[text]'
            )
            sys.exit(-1)

        self.transformer = TFOpenAIGPTModel.from_pretrained(
            pretrained_model_name_or_path
        )
        self.reduce_output = reduce_output
        self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output)
        self.transformer.trainable = trainable
        self.transformer.resize_token_embeddings(num_tokens)
 def test_TFOpenAIGPTModel(self):
     from transformers import OpenAIGPTTokenizer, TFOpenAIGPTModel
     pretrained_weights = 'openai-gpt'
     tokenizer = OpenAIGPTTokenizer.from_pretrained(pretrained_weights)
     text, inputs, inputs_onnx = self._prepare_inputs(tokenizer)
     model = TFOpenAIGPTModel.from_pretrained(pretrained_weights)
     predictions = model.predict(inputs)
     onnx_model = keras2onnx.convert_keras(model, model.name)
     self.assertTrue(
         run_onnx_runtime(onnx_model.graph.name, onnx_model, inputs_onnx,
                          predictions, self.model_files))