'last_name': last_name, 'party': party, 'state': state } yield d # Runs the main part of the pipeline. Errors will be tagged, clean politicians will continue on to BQ. pol = ( p | 'Read from CSV' >> beam.io.ReadFromText( '{0}/tmp/senate_members/*.csv'.format(os.path.expanduser('~')), skip_header_lines=1) | 'Split Values' >> beam.ParDo(SplitFn()) # | 'Isolate Attributes' >> beam.ParDo(pt.IsolateAttrFn()) | 'Scrub First Name' >> beam.ParDo(pt.ScrubFnameFn(), keep_suffix=True) | 'Fix Nicknames' >> beam.ParDo( pt.FixNicknameFn(), n_tbl=nickname_tbl, keep_nickname=True) | 'Scrub Last Name' >> beam.ParDo(pt.ScrubLnameFn()) | 'Fix Nones' >> beam.ParDo(pt.FixNoneFn()) | 'Tag Errors' >> beam.ParDo(pt.TagErrorsFn()).with_outputs('error_tag')) error_pols = pol.error_tag clean_pols = pol[None] # A new Politician will only be published if thy are not already contained in the Politicians table. If they are new, # they will be properly uploaded. If they are not new, then they will be ignored in this pipeline. # new_pol = ( # clean_pols # | 'Filter Existing Pols' >> beam.ParDo(pt.NewPolsOnlyFn(), pol_tbl=pols_tbl) # | 'Filter Pol Keys' >> beam.ParDo(pt.FilterKeysFn(), attr_lst=pol_attr_lst)
house_tbl = [dict(row.items()) for row in house_tbl] house_tbl = [{str(k):str(v) for (k,v) in d.items()} for d in house_tbl] # Runs the main part of the pipeline. Errors will be tagged, good votes will continue on to BQ. vote = ( p | beam.io.gcp.pubsub.ReadFromPubSub( topic = None, subscription = 'projects/{0}/subscriptions/{1}' .format(project_id, subscription_name), with_attributes = True) | 'Isolate Attributes' >> beam.ParDo(pt.IsolateAttrFn()) | 'Fix Value Types' >> beam.ParDo(pt.FixTypesFn(), int_lst=['vote_cast']) | 'Fix House First Names' >> beam.ParDo(pt.FixHouseFirstNameFn(), tbl=house_tbl) | 'Scrub First Name' >> beam.ParDo(pt.ScrubFnameFn()) | 'Fix Nicknames' >> beam.ParDo(pt.FixNicknameFn(), n_tbl=nickname_tbl) | 'Scrub Last Name' >> beam.ParDo(pt.ScrubLnameFn()) | 'Fix Nones' >> beam.ParDo(pt.FixNoneFn()) | 'Tag Errors' >> beam.ParDo(pt.TagErrorsFn()).with_outputs('error_tag')) # Separates the clean and error votes for proper processing. error_votes = vote.error_tag clean_votes = vote[None] # The cleaned elements will be sent to the proper BQ table for storage. (clean_votes | 'Filter Keys' >> beam.ParDo(pt.FilterKeysFn(), attr_lst=attributes_lst) | 'Write to BQ' >> beam.io.WriteToBigQuery( table = bq_spec, write_disposition = beam.io.BigQueryDisposition.WRITE_APPEND,