Exemple #1
0
    def test_initialize_stripe(self):
        """Test that we can initialize a stripe pattern"""

        stripes = patterns.StripePattern(WHITE, BLACK)
        self.assertEqual(stripes.color_a, WHITE)
        self.assertEqual(stripes.color_b, BLACK)
        self.assertEqual(stripes.transform, transforms.Identity(4))
    def test_default_view(self):
        """Test that the view transform for the default view is identity"""

        from_point = points.Point(0, 0, 0)
        to_point = points.Point(0, 0, -1)
        up = vectors.Vector(0, 1, 0)
        result = transforms.ViewTransform(from_point, to_point, up)
        self.assertEqual(result, transforms.Identity(4))
Exemple #3
0
    def __init__(self, material: Union[materials.Material, None] = None):

        self.id = uuid.uuid4()

        self.set_transform(transforms.Identity(4))

        if material is None:
            self.set_material(materials.Material())
        else:
            self.set_material(material)
    def test_identity_matrix_mult(self):
        """Test we can identify the identity matrix by a matrix and tuple"""

        ident = transforms.Identity(3)

        M = matrices.Matrix(3, 3)
        M.set_row(0, [1, 2, 3])
        M.set_row(1, [3, 2, 1])
        M.set_row(2, [2, 4, 6])

        M2 = M * ident
        self.assertEqual(M2, M)

        t = tuples.Tuple(["a", "b", "c"], 1, 2, 3)
        t2 = ident * t
        self.assertEqual(t2, t)
Exemple #5
0
    def __init__(self, hsize: int, vsize: int, field_of_view: float) -> None:

        self.hsize = hsize
        self.vsize = vsize
        self.field_of_view = field_of_view

        half_view = math.tan(field_of_view / 2)

        aspect = hsize / vsize

        if aspect >= 1:
            self.half_width = half_view
            self.half_height = half_view / aspect
        else:
            self.half_width = half_view * aspect
            self.half_height = half_view

        self.pixel_size = self.half_width * 2 / self.hsize

        self.transform = transforms.Identity(4)
Exemple #6
0
def main(epochs, batch_size, learn_angle, angle_lr):

    transform = torchvision.transforms.Compose([
        transforms.RandomRotation(30),
        transforms.Identity() if learn_angle else transforms.Free(),
        transforms.ToTensor(),
        transforms.Normalize()
    ])

    set_train = dataset.MNIST(root='./data',
                              train=True,
                              download=True,
                              transform=transform)
    set_test = dataset.MNIST(root='./data',
                             train=False,
                             download=True,
                             transform=transform)
    loader_train = torch.utils.data.DataLoader(set_train,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=2)
    loader_test = torch.utils.data.DataLoader(set_test,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              num_workers=2)

    nn = model.Net(learn_angle)
    if torch.cuda.is_available():
        nn.cuda()
    optimizer = optim.SGD(nn.parameters(), lr=0.001, momentum=0.9)

    VIEW_INTERVAL = 100
    for epoch in range(epochs):
        acc_loss = 0.0
        running_loss = 0.0
        for i, sample in enumerate(loader_train):

            x, y = pack(sample, learn_angle)

            optimizer.zero_grad()
            y_pred = nn(x)
            loss = model.loss(y_pred, y, angle_lr)
            loss.backward()
            optimizer.step()

            # report loss
            acc_loss += loss.item()
            if i % VIEW_INTERVAL == VIEW_INTERVAL - 1:
                running_loss = acc_loss / VIEW_INTERVAL
                click.secho(
                    f"\rEpoch {epoch+1}, iteration {i+1}; "
                    f"loss: {(running_loss):.3f}; ",
                    err=True,
                    nl=False)
                acc_loss = 0.0

        # testing
        count_correct = 0
        count_total = 0
        for sample in loader_test:
            x, labels = pack(sample, learn_angle)
            y_pred = nn(Variable(x))
            if learn_angle:
                labels = labels[0]
                y_pred = y_pred[0]
            _, labels_pred = torch.max(y_pred.data, 1)
            c = (labels_pred == labels).squeeze()
            count_correct += c.sum().item()
            count_total += len(c)

        click.secho(
            f"\rEpoch {epoch+1}; loss: {(running_loss):.3f}; "
            f"Test Acc: {100.0 * count_correct / count_total :.2f}%",
            err=True,
            nl=False)
        running_loss = 0

        click.secho('', err=True)
    def test_identity_matrix_transpose(self):
        """Test that the transpose of the identity matrix is identity"""

        ident = transforms.Identity(5)
        self.assertEqual(ident.transpose(), ident)
Exemple #8
0
 def __init__(self, array, transform=transforms.Identity()):
     Parentable.__init__(self)
     self._array = np.asarray(np.atleast_1d(array), dtype=np.float64)
     self.transform = transform
     self.prior = None
     self.fixed = False
Exemple #9
0
    def __init__(self):

        self.set_transform(transforms.Identity(4))
Exemple #10
0
    def test_default_transform(self):
        """Test that we get the identity matrix as the default transform"""

        s = shapes.Sphere()
        self.assertEqual(s.transform, transforms.Identity(4))