Exemple #1
0
    def cls_im(self, im):
        im = im.astype(np.float32, copy=True)
        normalized_im = T.normalize(im, mean=self.mean, std=self.std)
        scale_im, scale_ratio = T.scale(normalized_im, short_size=self.base_size)
        crop_ims = []
        if self.crop_type == 'center' or self.crop_type == 'single':  # for single crop
            crop_ims.append(T.center_crop(scale_im, crop_size=self.crop_size))
        elif self.crop_type == 'mirror' or self.crop_type == 'multi':  # for 10 crops
            crop_ims.extend(T.mirror_crop(scale_im, crop_size=self.crop_size))
        else:
            crop_ims.append(scale_im)

        scores = self.inference(np.asarray(crop_ims, dtype=np.float32), output_layer=self.prob_layer)

        return np.sum(scores, axis=0)
Exemple #2
0
def eval_batch():
    eval_len = len(SET_DICT)
    accuracy = np.zeros(len(args.top_k))
    start_time = datetime.datetime.now()

    for i in xrange(eval_len - args.skip_num):
        im = cv2.imread(SET_DICT[i + args.skip_num]['path'])
        im = T.bgr2rgb(im)
        scale_im = T.pil_resize(Image.fromarray(im), args.base_size)
        normalized_im = T.normalize(np.asarray(scale_im) / 255.0, mean=PIXEL_MEANS, std=PIXEL_STDS)
        crop_ims = []
        if args.crop_type == 'center':  # for single crop
            crop_ims.append(T.center_crop(normalized_im, crop_size=args.crop_size))
        elif args.crop_type == 'multi':  # for 10 crops
            crop_ims.extend(T.mirror_crop(normalized_im, crop_size=args.crop_size))
        else:
            crop_ims.append(normalized_im)

        score_vec = np.zeros(args.class_num, dtype=np.float32)
        iter_num = int(len(crop_ims) / args.batch_size)
        timer_pt1 = datetime.datetime.now()
        for j in xrange(iter_num):
            input_data = np.asarray(crop_ims, dtype=np.float32)[j * args.batch_size:(j + 1) * args.batch_size]
            input_data = input_data.transpose(0, 3, 1, 2)
            input_data = torch.autograd.Variable(torch.from_numpy(input_data).cuda(), volatile=True)
            outputs = MODEL(input_data)
            scores = outputs.data.cpu().numpy()
            score_vec += np.sum(scores, axis=0)
        score_index = (-score_vec / len(crop_ims)).argsort() - 1
        timer_pt2 = datetime.datetime.now()

        SET_DICT[i + args.skip_num]['evaluated'] = True
        SET_DICT[i + args.skip_num]['score_vec'] = score_vec / len(crop_ims)

        print 'Testing image: {}/{} {} {}/{} {}s' \
            .format(str(i + 1), str(eval_len - args.skip_num), str(SET_DICT[i + args.skip_num]['path'].split('/')[-1]),
                    str(score_index[0]), str(SET_DICT[i + args.skip_num]['gt']),
                    str((timer_pt2 - timer_pt1).microseconds / 1e6 + (timer_pt2 - timer_pt1).seconds)),

        for j in xrange(len(args.top_k)):
            if SET_DICT[i + args.skip_num]['gt'] in score_index[:args.top_k[j]]:
                accuracy[j] += 1
            tmp_acc = float(accuracy[j]) / float(i + 1)
            if args.top_k[j] == 1:
                print '\ttop_' + str(args.top_k[j]) + ':' + str(tmp_acc),
            else:
                print 'top_' + str(args.top_k[j]) + ':' + str(tmp_acc)
    end_time = datetime.datetime.now()

    w = open(LOG_PTH, 'w')
    s1 = 'Evaluation process ends at: {}. \nTime cost is: {}. '.format(str(end_time), str(end_time - start_time))
    s2 = '\nThe model is: {}. \nThe val file is: {}. \n{} images has been tested, crop_type is: {}, base_size is: {}, ' \
         'crop_size is: {}.'.format(args.model_weights, args.val_file, str(eval_len - args.skip_num),
                                    args.crop_type, str(args.base_size), str(args.crop_size))
    s3 = '\nThe PIXEL_MEANS is: ({}, {}, {}), PIXEL_STDS is : ({}, {}, {}).' \
        .format(str(PIXEL_MEANS[0]), str(PIXEL_MEANS[1]), str(PIXEL_MEANS[2]), str(PIXEL_STDS[0]), str(PIXEL_STDS[1]),
                str(PIXEL_STDS[2]))
    s4 = ''
    for i in xrange(len(args.top_k)):
        _acc = float(accuracy[i]) / float(eval_len - args.skip_num)
        s4 += '\nAccuracy of top_{} is: {}; correct num is {}.'.format(str(args.top_k[i]), str(_acc),
                                                                       str(int(accuracy[i])))
    print s1, s2, s3, s4
    w.write(s1 + s2 + s3 + s4)
    w.close()

    if args.save_score_vec:
        w = open(LOG_PTH.replace('.txt', 'scorevec.txt'), 'w')
        for i in xrange(eval_len - args.skip_num):
            w.write(SET_DICT[i + args.skip_num]['score_vec'])
        w.close()
    print('DONE!')
Exemple #3
0
def eval_batch():
    # shuffle_conv1_channel()
    eval_len = len(SET_DICT)
    # eval_len = 1000
    accuracy = np.zeros(len(args.top_k))
    start_time = datetime.datetime.now()

    for i in xrange(eval_len - args.skip_num):
        im = cv2.imread(SET_DICT[i + args.skip_num]['path'])
        if (PIXEL_MEANS == np.array([103.52, 116.28, 123.675])).all() and \
                (PIXEL_STDS == np.array([57.375, 57.12, 58.395])).all():
            scale_im = T.pil_scale(Image.fromarray(im), args.base_size)
            scale_im = np.asarray(scale_im)
        else:
            scale_im, _ = T.scale(im, short_size=args.base_size) 
        input_im = T.normalize(scale_im, mean=PIXEL_MEANS, std=PIXEL_STDS)
        crop_ims = []
        if args.crop_type == 'center':  # for single crop
            crop_ims.append(T.center_crop(input_im, crop_size=args.crop_size))
        elif args.crop_type == 'multi':  # for 10 crops
            crop_ims.extend(T.mirror_crop(input_im, crop_size=args.crop_size))
        else:
            crop_ims.append(input_im)

        score_vec = np.zeros(args.class_num, dtype=np.float32)
        iter_num = int(len(crop_ims) / args.batch_size)
        timer_pt1 = datetime.datetime.now()
        for j in xrange(iter_num):
            scores = CLS.inference(
                np.asarray(crop_ims, dtype=np.float32)[j * args.batch_size:(j + 1) * args.batch_size],
                output_layer=args.prob_layer
            )
            score_vec += np.sum(scores, axis=0)
        score_index = (-score_vec / len(crop_ims)).argsort()
        timer_pt2 = datetime.datetime.now()

        SET_DICT[i + args.skip_num]['evaluated'] = True
        SET_DICT[i + args.skip_num]['score_vec'] = score_vec / len(crop_ims)

        print 'Testing image: {}/{} {} {}/{} {}s' \
            .format(str(i + 1), str(eval_len - args.skip_num), str(SET_DICT[i + args.skip_num]['path'].split('/')[-1]),
                    str(score_index[0]), str(SET_DICT[i + args.skip_num]['gt']),
                    str((timer_pt2 - timer_pt1).microseconds / 1e6 + (timer_pt2 - timer_pt1).seconds)),

        for j in xrange(len(args.top_k)):
            if SET_DICT[i + args.skip_num]['gt'] in score_index[:args.top_k[j]]:
                accuracy[j] += 1
            tmp_acc = float(accuracy[j]) / float(i + 1)
            if args.top_k[j] == 1:
                print '\ttop_' + str(args.top_k[j]) + ':' + str(tmp_acc),
            else:
                print 'top_' + str(args.top_k[j]) + ':' + str(tmp_acc)
    end_time = datetime.datetime.now()

    w = open(LOG_PTH, 'w')
    s1 = 'Evaluation process ends at: {}. \nTime cost is: {}. '.format(str(end_time), str(end_time - start_time))
    s2 = '\nThe model is: {}. \nThe val file is: {}. \n{} images has been tested, crop_type is: {}, base_size is: {}, ' \
         'crop_size is: {}.'.format(args.model_weights, args.val_file, str(eval_len - args.skip_num),
                                    args.crop_type, str(args.base_size), str(args.crop_size))
    s3 = '\nThe PIXEL_MEANS is: ({}, {}, {}), PIXEL_STDS is : ({}, {}, {}).' \
        .format(str(PIXEL_MEANS[0]), str(PIXEL_MEANS[1]), str(PIXEL_MEANS[2]), str(PIXEL_STDS[0]), str(PIXEL_STDS[1]),
                str(PIXEL_STDS[2]))
    s4 = ''
    for i in xrange(len(args.top_k)):
        _acc = float(accuracy[i]) / float(eval_len - args.skip_num)
        s4 += '\nAccuracy of top_{} is: {}; correct num is {}.'.format(str(args.top_k[i]), str(_acc),
                                                                       str(int(accuracy[i])))
    print s1, s2, s3, s4
    w.write(s1 + s2 + s3 + s4)
    w.close()

    if args.save_score_vec:
        w = open(LOG_PTH.replace('.txt', 'scorevec.txt'), 'w')
        for i in xrange(eval_len - args.skip_num):
            w.write(SET_DICT[i + args.skip_num]['score_vec'])
    w.close()
    print('DONE!')