Exemple #1
0
 def _recache(self):
     self._path = Path(np.empty((0,2)))
     self._transform = IdentityTransform()
     self._alt_path = None
     self._alt_transform = None
     self._snap_threshold = None
     self._filled = True
     self._marker_function()
 def get_transform(self):
     """
     Return the :class:`~matplotlib.transforms.Transform`
     instance used by this artist.
     """
     if self._transform is None:
         self._transform = IdentityTransform()
     elif (not isinstance(self._transform, Transform)
           and hasattr(self._transform, '_as_mpl_transform')):
         self._transform = self._transform._as_mpl_transform(self.axes)
     return self._transform
Exemple #3
0
 def get_transform(self):
     """
     Return the :class:`~matplotlib.transforms.Transform`
     instance used by this artist.
     """
     if self._transform is None:
         self._transform = IdentityTransform()
     return self._transform
Exemple #4
0
    def _draw_steps_post(self, renderer, gc, path, trans):
        vertices = self._xy
        steps = ma.zeros((2 * len(vertices) - 1, 2), np.float_)

        steps[::2, 0], steps[1:-1:2, 0] = vertices[:, 0], vertices[1:, 0]
        steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:-1, 1]

        path = Path(steps)
        path = path.transformed(self.get_transform())
        self._lineFunc(renderer, gc, path, IdentityTransform())
Exemple #5
0
 def get_transform(self):
     """
     Return the :class:`~matplotlib.transforms.Transform`
     instance used by this artist.
     """
     if self._transform is None:
         self._transform = IdentityTransform()
     elif not isinstance(self._transform, Transform) and hasattr(self._transform, "_as_mpl_transform"):
         self._transform = self._transform._as_mpl_transform(self.axes)
     return self._transform
Exemple #6
0
class MarkerStyle:
    style_table = """
============================== ===============================================
marker                         description
============================== ===============================================
%s
``'$...$'``                    render the string using mathtext.
*verts*                        a list of (x, y) pairs used for Path vertices.
path                           a :class:`~matplotlib.path.Path` instance.
(*numsides*, *style*, *angle*) see below
============================== ===============================================

The marker can also be a tuple (*numsides*, *style*, *angle*), which
will create a custom, regular symbol.

    *numsides*:
      the number of sides

    *style*:
      the style of the regular symbol:

      =====   =============================================
      Value   Description
      =====   =============================================
      0       a regular polygon
      1       a star-like symbol
      2       an asterisk
      3       a circle (*numsides* and *angle* is ignored)
      =====   =============================================

    *angle*:
      the angle of rotation of the symbol, in degrees

For backward compatibility, the form (*verts*, 0) is also accepted,
but it is equivalent to just *verts* for giving a raw set of vertices
that define the shape.
"""

    # TODO: Automatically generate this
    accepts = """ACCEPTS: [ %s | ``'$...$'`` | *tuple* | *Nx2 array* ]"""

    markers = {
        '.': 'point',
        ',': 'pixel',
        'o': 'circle',
        'v': 'triangle_down',
        '^': 'triangle_up',
        '<': 'triangle_left',
        '>': 'triangle_right',
        '1': 'tri_down',
        '2': 'tri_up',
        '3': 'tri_left',
        '4': 'tri_right',
        '8': 'octagon',
        's': 'square',
        'p': 'pentagon',
        '*': 'star',
        'h': 'hexagon1',
        'H': 'hexagon2',
        '+': 'plus',
        'x': 'x',
        'D': 'diamond',
        'd': 'thin_diamond',
        '|': 'vline',
        '_': 'hline',
        TICKLEFT: 'tickleft',
        TICKRIGHT: 'tickright',
        TICKUP: 'tickup',
        TICKDOWN: 'tickdown',
        CARETLEFT: 'caretleft',
        CARETRIGHT: 'caretright',
        CARETUP: 'caretup',
        CARETDOWN: 'caretdown',
        "None": 'nothing',
        None: 'nothing',
        ' ': 'nothing',
        '': 'nothing'
    }

    # Just used for informational purposes.  is_filled()
    # is calculated in the _set_* functions.
    filled_markers = ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H',
                      'D', 'd')

    fillstyles = ('full', 'left', 'right', 'bottom', 'top', 'none')
    _half_fillstyles = ('left', 'right', 'bottom', 'top')

    # TODO: Is this ever used as a non-constant?
    _point_size_reduction = 0.5

    def __init__(self, marker=None, fillstyle='full'):
        self._fillstyle = fillstyle
        self.set_marker(marker)
        self.set_fillstyle(fillstyle)

    def __getstate__(self):
        d = self.__dict__.copy()
        d.pop('_marker_function')
        return d

    def __setstate__(self, statedict):
        self.__dict__ = statedict
        self.set_marker(self._marker)
        self._recache()

    def _recache(self):
        self._path = Path(np.empty((0, 2)))
        self._transform = IdentityTransform()
        self._alt_path = None
        self._alt_transform = None
        self._snap_threshold = None
        self._joinstyle = 'round'
        self._capstyle = 'butt'
        self._filled = True
        self._marker_function()

    def __nonzero__(self):
        return bool(len(self._path.vertices))

    def is_filled(self):
        return self._filled

    def get_fillstyle(self):
        return self._fillstyle

    def set_fillstyle(self, fillstyle):
        # TODO: Raise exception for markers where fillstyle doesn't make sense
        assert fillstyle in self.fillstyles
        self._fillstyle = fillstyle
        self._recache()

    def get_joinstyle(self):
        return self._joinstyle

    def get_capstyle(self):
        return self._capstyle

    def get_marker(self):
        return self._marker

    def set_marker(self, marker):
        if (iterable(marker) and len(marker) in (2, 3)
                and marker[1] in (0, 1, 2, 3)):
            self._marker_function = self._set_tuple_marker
        elif isinstance(marker, np.ndarray):
            self._marker_function = self._set_vertices
        elif not isinstance(marker, list) and marker in self.markers:
            self._marker_function = getattr(self,
                                            '_set_' + self.markers[marker])
        elif is_string_like(marker) and is_math_text(marker):
            self._marker_function = self._set_mathtext_path
        elif isinstance(marker, Path):
            self._marker_function = self._set_path_marker
        else:
            try:
                _ = Path(marker)
                self._marker_function = self._set_vertices
            except ValueError:
                raise ValueError('Unrecognized marker style {}'.format(marker))

        self._marker = marker
        self._recache()

    def get_path(self):
        return self._path

    def get_transform(self):
        return self._transform.frozen()

    def get_alt_path(self):
        return self._alt_path

    def get_alt_transform(self):
        return self._alt_transform.frozen()

    def get_snap_threshold(self):
        return self._snap_threshold

    def _set_nothing(self):
        self._filled = False

    def _set_custom_marker(self, path):
        verts = path.vertices
        rescale = max(np.max(np.abs(verts[:, 0])), np.max(np.abs(verts[:, 1])))
        self._transform = Affine2D().scale(1.0 / rescale)
        self._path = path

    def _set_path_marker(self):
        self._set_custom_marker(self._marker)

    def _set_vertices(self):
        verts = self._marker
        marker = Path(verts)
        self._set_custom_marker(marker)

    def _set_tuple_marker(self):
        marker = self._marker
        if is_numlike(marker[0]):
            if len(marker) == 2:
                numsides, rotation = marker[0], 0.0
            elif len(marker) == 3:
                numsides, rotation = marker[0], marker[2]
            symstyle = marker[1]
            if symstyle == 0:
                self._path = Path.unit_regular_polygon(numsides)
                self._joinstyle = 'miter'
            elif symstyle == 1:
                self._path = Path.unit_regular_star(numsides)
                self._joinstyle = 'bevel'
            elif symstyle == 2:
                self._path = Path.unit_regular_asterisk(numsides)
                self._filled = False
                self._joinstyle = 'bevel'
            elif symstyle == 3:
                self._path = Path.unit_circle()
            self._transform = Affine2D().scale(0.5).rotate_deg(rotation)
        else:
            verts = np.asarray(marker[0])
            path = Path(verts)
            self._set_custom_marker(path)

    def _set_mathtext_path(self):
        """
        Draws mathtext markers '$...$' using TextPath object.

        Submitted by tcb
        """
        from matplotlib.text import TextPath
        from matplotlib.font_manager import FontProperties

        # again, the properties could be initialised just once outside
        # this function
        # Font size is irrelevant here, it will be rescaled based on
        # the drawn size later
        props = FontProperties(size=1.0)
        text = TextPath(xy=(0, 0),
                        s=self.get_marker(),
                        fontproperties=props,
                        usetex=rcParams['text.usetex'])
        if len(text.vertices) == 0:
            return

        xmin, ymin = text.vertices.min(axis=0)
        xmax, ymax = text.vertices.max(axis=0)
        width = xmax - xmin
        height = ymax - ymin
        max_dim = max(width, height)
        self._transform = Affine2D() \
            .translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height) \
            .scale(1.0 / max_dim)
        self._path = text
        self._snap = False

    def _half_fill(self):
        fs = self.get_fillstyle()
        result = fs in self._half_fillstyles
        return result

    def _set_circle(self, reduction=1.0):
        self._transform = Affine2D().scale(0.5 * reduction)
        self._snap_threshold = 6.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_circle()
        else:
            # build a right-half circle
            if fs == 'bottom': rotate = 270.
            elif fs == 'top': rotate = 90.
            elif fs == 'left': rotate = 180.
            else: rotate = 0.

            self._path = self._alt_path = Path.unit_circle_righthalf()
            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform.frozen().rotate_deg(180.)

    def _set_pixel(self):
        self._path = Path.unit_rectangle()
        # Ideally, you'd want -0.5, -0.5 here, but then the snapping
        # algorithm in the Agg backend will round this to a 2x2
        # rectangle from (-1, -1) to (1, 1).  By offsetting it
        # slightly, we can force it to be (0, 0) to (1, 1), which both
        # makes it only be a single pixel and places it correctly
        # aligned to 1-width stroking (i.e. the ticks).  This hack is
        # the best of a number of bad alternatives, mainly because the
        # backends are not aware of what marker is actually being used
        # beyond just its path data.
        self._transform = Affine2D().translate(-0.49999, -0.49999)
        self._snap_threshold = None

    def _set_point(self):
        self._set_circle(reduction=self._point_size_reduction)

    _triangle_path = Path(
        [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    # Going down halfway looks to small.  Golden ratio is too far.
    _triangle_path_u = Path(
        [[0.0, 1.0], [-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    _triangle_path_d = Path(
        [[-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [1.0, -1.0], [-1.0, -1.0],
         [-3 / 5., -1 / 5.]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    _triangle_path_l = Path(
        [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    _triangle_path_r = Path(
        [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])

    def _set_triangle(self, rot, skip):
        self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot)
        self._snap_threshold = 5.0
        fs = self.get_fillstyle()

        if not self._half_fill():
            self._path = self._triangle_path
        else:
            mpaths = [
                self._triangle_path_u, self._triangle_path_l,
                self._triangle_path_d, self._triangle_path_r
            ]

            if fs == 'top':
                self._path = mpaths[(0 + skip) % 4]
                self._alt_path = mpaths[(2 + skip) % 4]
            elif fs == 'bottom':
                self._path = mpaths[(2 + skip) % 4]
                self._alt_path = mpaths[(0 + skip) % 4]
            elif fs == 'left':
                self._path = mpaths[(1 + skip) % 4]
                self._alt_path = mpaths[(3 + skip) % 4]
            else:
                self._path = mpaths[(3 + skip) % 4]
                self._alt_path = mpaths[(1 + skip) % 4]

            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_triangle_up(self):
        return self._set_triangle(0.0, 0)

    def _set_triangle_down(self):
        return self._set_triangle(180.0, 2)

    def _set_triangle_left(self):
        return self._set_triangle(90.0, 3)

    def _set_triangle_right(self):
        return self._set_triangle(270.0, 1)

    def _set_square(self):
        self._transform = Affine2D().translate(-0.5, -0.5)
        self._snap_threshold = 2.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_rectangle()
        else:
            # build a bottom filled square out of two rectangles, one
            # filled.  Use the rotation to support left, right, bottom
            # or top
            if fs == 'bottom': rotate = 0.
            elif fs == 'top': rotate = 180.
            elif fs == 'left': rotate = 270.
            else: rotate = 90.

            self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5],
                               [0.0, 0.0]])
            self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0],
                                   [0.0, 1.0], [0.0, 0.5]])
            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_diamond(self):
        self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45)
        self._snap_threshold = 5.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_rectangle()
        else:
            self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]])
            self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0],
                                   [0.0, 0.0]])

            if fs == 'bottom': rotate = 270.
            elif fs == 'top': rotate = 90.
            elif fs == 'left': rotate = 180.
            else: rotate = 0.

            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_thin_diamond(self):
        self._set_diamond()
        self._transform.scale(0.6, 1.0)

    def _set_pentagon(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        polypath = Path.unit_regular_polygon(5)
        fs = self.get_fillstyle()

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            y = (1 + np.sqrt(5)) / 4.
            top = Path([verts[0], verts[1], verts[4], verts[0]])
            bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]])
            left = Path([verts[0], verts[1], verts[2], [0, -y], verts[0]])
            right = Path([verts[0], verts[4], verts[3], [0, -y], verts[0]])

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left
            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_star(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_star(5, innerCircle=0.381966)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            top = Path(np.vstack((verts[0:4, :], verts[7:10, :], verts[0])))
            bottom = Path(np.vstack((verts[3:8, :], verts[3])))
            left = Path(np.vstack((verts[0:6, :], verts[0])))
            right = Path(np.vstack((verts[0], verts[5:10, :], verts[0])))

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left
            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'bevel'

    def _set_hexagon1(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = None

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(6)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            # not drawing inside lines
            x = np.abs(np.cos(5 * np.pi / 6.))
            top = Path(np.vstack(([-x, 0], verts[(1, 0, 5), :], [x, 0])))
            bottom = Path(np.vstack(([-x, 0], verts[2:5, :], [x, 0])))
            left = Path(verts[(0, 1, 2, 3), :])
            right = Path(verts[(0, 5, 4, 3), :])

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left

            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_hexagon2(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(30)
        self._snap_threshold = None

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(6)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            # not drawing inside lines
            x, y = np.sqrt(3) / 4, 3 / 4.
            top = Path(verts[(1, 0, 5, 4, 1), :])
            bottom = Path(verts[(1, 2, 3, 4), :])
            left = Path(
                np.vstack(([x, y], verts[(0, 1, 2), :], [-x, -y], [x, y])))
            right = Path(np.vstack(([x, y], verts[(5, 4, 3), :], [-x, -y])))

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left

            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_octagon(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(8)

        if not self._half_fill():
            self._transform.rotate_deg(22.5)
            self._path = polypath
        else:
            x = np.sqrt(2.) / 4.
            half = Path([[0, -1], [0, 1], [-x, 1], [-1, x], [-1, -x], [-x, -1],
                         [0, -1]])

            if fs == 'bottom': rotate = 90.
            elif fs == 'top': rotate = 270.
            elif fs == 'right': rotate = 180.
            else: rotate = 0.

            self._transform.rotate_deg(rotate)
            self._path = self._alt_path = half
            self._alt_transform = self._transform.frozen().rotate_deg(180.0)

        self._joinstyle = 'miter'

    _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]])

    def _set_vline(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._line_marker_path

    def _set_hline(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._line_marker_path

    _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]])

    def _set_tickleft(self):
        self._transform = Affine2D().scale(-1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickhoriz_path

    def _set_tickright(self):
        self._transform = Affine2D().scale(1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickhoriz_path

    _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]])

    def _set_tickup(self):
        self._transform = Affine2D().scale(1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickvert_path

    def _set_tickdown(self):
        self._transform = Affine2D().scale(1.0, -1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickvert_path

    _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]],
                      [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO])

    def _set_plus(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._plus_path

    _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5],
                      [0.0, 0.0], [-0.8, 0.5]], [
                          Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO,
                          Path.MOVETO, Path.LINETO
                      ])

    def _set_tri_down(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_up(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_left(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(270)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_right(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(180)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]])

    def _set_caretdown(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    def _set_caretup(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(180)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    def _set_caretleft(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(270)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    def _set_caretright(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]],
                   [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO])

    def _set_x(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._x_path
Exemple #7
0
class MarkerStyle:
    style_table = """
============================== ===============================================
marker                         description
============================== ===============================================
%s
``'$...$'``                    render the string using mathtext
*verts*                        a list of (x, y) pairs in range (0, 1)
(*numsides*, *style*, *angle*) see below
============================== ===============================================

The marker can also be a tuple (*numsides*, *style*, *angle*), which
will create a custom, regular symbol.

    *numsides*:
      the number of sides

    *style*:
      the style of the regular symbol:

      =====   =============================================
      Value   Description
      =====   =============================================
      0       a regular polygon
      1       a star-like symbol
      2       an asterisk
      3       a circle (*numsides* and *angle* is ignored)
      =====   =============================================

    *angle*:
      the angle of rotation of the symbol

For backward compatibility, the form (*verts*, 0) is also accepted,
but it is equivalent to just *verts* for giving a raw set of vertices
that define the shape.
"""

    # TODO: Automatically generate this
    accepts = """ACCEPTS: [ %s | ``'$...$'`` | *tuple* | *Nx2 array* ]"""

    markers =  {
        '.'        : 'point',
        ','        : 'pixel',
        'o'        : 'circle',
        'v'        : 'triangle_down',
        '^'        : 'triangle_up',
        '<'        : 'triangle_left',
        '>'        : 'triangle_right',
        '1'        : 'tri_down',
        '2'        : 'tri_up',
        '3'        : 'tri_left',
        '4'        : 'tri_right',
        '8'        : 'octagon',
        's'        : 'square',
        'p'        : 'pentagon',
        '*'        : 'star',
        'h'        : 'hexagon1',
        'H'        : 'hexagon2',
        '+'        : 'plus',
        'x'        : 'x',
        'D'        : 'diamond',
        'd'        : 'thin_diamond',
        '|'        : 'vline',
        '_'        : 'hline',
        TICKLEFT   : 'tickleft',
        TICKRIGHT  : 'tickright',
        TICKUP     : 'tickup',
        TICKDOWN   : 'tickdown',
        CARETLEFT  : 'caretleft',
        CARETRIGHT : 'caretright',
        CARETUP    : 'caretup',
        CARETDOWN  : 'caretdown',
        "None"       : 'nothing',
        None       : 'nothing',
        ' '        : 'nothing',
        ''         : 'nothing'
    }

    # Just used for informational purposes.  is_filled()
    # is calculated in the _set_* functions.
    filled_markers = (
        'o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd')

    fillstyles = ('full', 'left' , 'right' , 'bottom' , 'top', 'none')
    _half_fillstyles = ('left' , 'right' , 'bottom' , 'top')

    # TODO: Is this ever used as a non-constant?
    _point_size_reduction = 0.5

    def __init__(self, marker=None, fillstyle='full'):
        self._fillstyle = fillstyle
        self.set_marker(marker)
        self.set_fillstyle(fillstyle)

    def _recache(self):
        self._path = Path(np.empty((0,2)))
        self._transform = IdentityTransform()
        self._alt_path = None
        self._alt_transform = None
        self._snap_threshold = None
        self._joinstyle = 'round'
        self._capstyle = 'butt'
        self._filled = True
        self._marker_function()

    def __nonzero__(self):
        return bool(len(self._path.vertices))

    def is_filled(self):
        return self._filled

    def get_fillstyle(self):
        return self._fillstyle

    def set_fillstyle(self, fillstyle):
        # TODO: Raise exception for markers where fillstyle doesn't make sense
        assert fillstyle in self.fillstyles
        self._fillstyle = fillstyle
        self._recache()

    def get_joinstyle(self):
        return self._joinstyle

    def get_capstyle(self):
        return self._capstyle

    def get_marker(self):
        return self._marker

    def set_marker(self, marker):
        if (iterable(marker) and len(marker) in (2, 3) and
            marker[1] in (0, 1, 2, 3)):
            self._marker_function = self._set_tuple_marker
        elif marker in self.markers:
            self._marker_function = getattr(
                self, '_set_' + self.markers[marker])
        elif is_string_like(marker) and is_math_text(marker):
            self._marker_function = self._set_mathtext_path
        elif isinstance(marker, Path):
            self._marker_function = self._set_path_marker
        else:
            try:
                path = Path(marker)
                self._marker_function = self._set_vertices
            except:
                raise ValueError('Unrecognized marker style %s' % marker)

        self._marker = marker
        self._recache()

    def get_path(self):
        return self._path

    def get_transform(self):
        return self._transform.frozen()

    def get_alt_path(self):
        return self._alt_path

    def get_alt_transform(self):
        return self._alt_transform.frozen()

    def get_snap_threshold(self):
        return self._snap_threshold

    def _set_nothing(self):
        self._filled = False

    def _set_custom_marker(self, path):
        verts = path.vertices
        rescale = max(np.max(np.abs(verts[:,0])), np.max(np.abs(verts[:,1])))
        self._transform = Affine2D().scale(1.0 / rescale)
        self._path = path

    def _set_path_marker(self):
        self._set_custom_marker(self._marker)

    def _set_vertices(self):
        path = Path(verts)
        self._set_custom_marker(path)

    def _set_tuple_marker(self):
        marker = self._marker
        if is_numlike(marker[0]):
            if len(marker) == 2:
                numsides, rotation = marker[0], 0.0
            elif len(marker) == 3:
                numsides, rotation = marker[0], marker[2]
            symstyle = marker[1]
            if symstyle == 0:
                self._path = Path.unit_regular_polygon(numsides)
                self._joinstyle = 'miter'
            elif symstyle == 1:
                self._path = Path.unit_regular_star(numsides)
                self._joinstyle = 'bevel'
            elif symstyle == 2:
                self._path = Path.unit_regular_asterisk(numsides)
                self._filled = False
                self._joinstyle = 'bevel'
            elif symstyle == 3:
                self._path = Path.unit_circle()
            self._transform = Affine2D().scale(0.5).rotate_deg(rotation)
        else:
            verts = np.asarray(marker[0])
            path = Path(verts)
            self._set_custom_marker(path)

    def _set_mathtext_path(self):
        """
        Draws mathtext markers '$...$' using TextPath object.

        Submitted by tcb
        """
        from matplotlib.patches import PathPatch
        from matplotlib.text import TextPath
        from matplotlib.font_manager import FontProperties

        # again, the properties could be initialised just once outside
        # this function
        # Font size is irrelevant here, it will be rescaled based on
        # the drawn size later
        props = FontProperties(size=1.0)
        text = TextPath(xy=(0,0), s=self.get_marker(), fontproperties=props,
                        usetex=rcParams['text.usetex'])
        if len(text.vertices) == 0:
            return

        xmin, ymin = text.vertices.min(axis=0)
        xmax, ymax = text.vertices.max(axis=0)
        width = xmax - xmin
        height = ymax - ymin
        max_dim = max(width, height)
        self._transform = Affine2D() \
            .translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height) \
            .scale(1.0 / max_dim)
        self._path = text
        self._snap = False

    def _half_fill(self):
        fs = self.get_fillstyle()
        result = fs in self._half_fillstyles
        return result

    def _set_circle(self, reduction = 1.0):
        self._transform = Affine2D().scale(0.5 * reduction)
        self._snap_threshold = 3.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_circle()
        else:
            # build a right-half circle
            if fs=='bottom': rotate = 270.
            elif fs=='top': rotate = 90.
            elif fs=='left': rotate = 180.
            else: rotate = 0.

            self._path = self._alt_path = Path.unit_circle_righthalf()
            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform.frozen().rotate_deg(180.)

    def _set_pixel(self):
        self._path = Path.unit_rectangle()
        # Ideally, you'd want -0.5, -0.5 here, but then the snapping
        # algorithm in the Agg backend will round this to a 2x2
        # rectangle from (-1, -1) to (1, 1).  By offsetting it
        # slightly, we can force it to be (0, 0) to (1, 1), which both
        # makes it only be a single pixel and places it correctly
        # aligned to 1-width stroking (i.e. the ticks).  This hack is
        # the best of a number of bad alternatives, mainly because the
        # backends are not aware of what marker is actually being used
        # beyond just its path data.
        self._transform = Affine2D().translate(-0.49999, -0.49999)
        self._snap_threshold = None

    def _set_point(self):
        self._set_circle(reduction = self._point_size_reduction)

    _triangle_path = Path(
        [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    # Going down halfway looks to small.  Golden ratio is too far.
    _triangle_path_u = Path(
        [[0.0, 1.0], [-3/5., -1/5.], [3/5., -1/5.], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    _triangle_path_d = Path(
        [[-3/5., -1/5.], [3/5., -1/5.], [1.0, -1.0], [-1.0, -1.0], [-3/5., -1/5.]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    _triangle_path_l = Path(
        [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    _triangle_path_r = Path(
        [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY])
    def _set_triangle(self, rot, skip):
        self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot)
        self._snap_threshold = 5.0
        fs = self.get_fillstyle()

        if not self._half_fill():
            self._path = self._triangle_path
        else:
            mpaths = [self._triangle_path_u,
                      self._triangle_path_l,
                      self._triangle_path_d,
                      self._triangle_path_r]

            if fs=='top':
                self._path = mpaths[(0+skip) % 4]
                self._alt_path = mpaths[(2+skip) % 4]
            elif fs=='bottom':
                self._path = mpaths[(2+skip) % 4]
                self._alt_path = mpaths[(0+skip) % 4]
            elif fs=='left':
                self._path = mpaths[(1+skip) % 4]
                self._alt_path = mpaths[(3+skip) % 4]
            else:
                self._path = mpaths[(3+skip) % 4]
                self._alt_path = mpaths[(1+skip) % 4]

            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_triangle_up(self):
        return self._set_triangle(0.0, 0)

    def _set_triangle_down(self):
        return self._set_triangle(180.0, 2)

    def _set_triangle_left(self):
        return self._set_triangle(90.0, 3)

    def _set_triangle_right(self):
        return self._set_triangle(270.0, 1)

    def _set_square(self):
        self._transform = Affine2D().translate(-0.5, -0.5)
        self._snap_threshold = 2.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_rectangle()
        else:
            # build a bottom filled square out of two rectangles, one
            # filled.  Use the rotation to support left, right, bottom
            # or top
            if fs=='bottom': rotate = 0.
            elif fs=='top': rotate = 180.
            elif fs=='left': rotate = 270.
            else: rotate = 90.

            self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5], [0.0, 0.0]])
            self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0], [0.0, 0.5]])
            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_diamond(self):
        self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45)
        self._snap_threshold = 5.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_rectangle()
        else:
            self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]])
            self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, 0.0]])

            if fs=='bottom': rotate = 270.
            elif fs=='top': rotate = 90.
            elif fs=='left': rotate = 180.
            else: rotate = 0.

            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_thin_diamond(self):
        self._set_diamond()
        self._transform.scale(0.6, 1.0)

    def _set_pentagon(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        polypath = Path.unit_regular_polygon(5)
        fs = self.get_fillstyle()

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            y = (1+np.sqrt(5))/4.
            top = Path([verts[0], verts[1], verts[4], verts[0]])
            bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]])
            left = Path([verts[0], verts[1], verts[2], [0,-y], verts[0]])
            right = Path([verts[0], verts[4], verts[3], [0,-y], verts[0]])

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left
            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_star(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_star(5, innerCircle=0.381966)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            top = Path(np.vstack((verts[0:4,:], verts[7:10,:], verts[0])))
            bottom = Path(np.vstack((verts[3:8,:], verts[3])))
            left = Path(np.vstack((verts[0:6,:], verts[0])))
            right = Path(np.vstack((verts[0], verts[5:10,:], verts[0])))

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left
            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'bevel'

    def _set_hexagon1(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(6)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            # not drawing inside lines
            x = np.abs(np.cos(5*np.pi/6.))
            top = Path(np.vstack(([-x,0],verts[(1,0,5),:],[x,0])))
            bottom = Path(np.vstack(([-x,0],verts[2:5,:],[x,0])))
            left = Path(verts[(0,1,2,3),:])
            right = Path(verts[(0,5,4,3),:])

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left

            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_hexagon2(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(30)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(6)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            # not drawing inside lines
            x, y = np.sqrt(3)/4, 3/4.
            top = Path(verts[(1,0,5,4,1),:])
            bottom = Path(verts[(1,2,3,4),:])
            left = Path(np.vstack(([x,y],verts[(0,1,2),:],[-x,-y],[x,y])))
            right = Path(np.vstack(([x,y],verts[(5,4,3),:],[-x,-y])))

            if fs == 'top':
                mpath, mpath_alt = top, bottom
            elif fs == 'bottom':
                mpath, mpath_alt = bottom, top
            elif fs == 'left':
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left

            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = 'miter'

    def _set_octagon(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(8)

        if not self._half_fill():
            self._transform.rotate_deg(22.5)
            self._path = polypath
        else:
            x = np.sqrt(2.)/4.
            half = Path([[0, -1], [0, 1], [-x, 1], [-1, x],
                         [-1, -x], [-x, -1], [0, -1]])

            if fs=='bottom': rotate = 90.
            elif fs=='top': rotate = 270.
            elif fs=='right': rotate = 180.
            else: rotate = 0.

            self._transform.rotate_deg(rotate)
            self._path = self._alt_path = half
            self._alt_transform = self._transform.frozen().rotate_deg(180.0)

        self._joinstyle = 'miter'

    _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]])
    def _set_vline(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._line_marker_path

    def _set_hline(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._line_marker_path

    _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]])
    def _set_tickleft(self):
        self._transform = Affine2D().scale(-1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickhoriz_path

    def _set_tickright(self):
        self._transform = Affine2D().scale(1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickhoriz_path

    _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]])
    def _set_tickup(self):
        self._transform = Affine2D().scale(1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickvert_path

    def _set_tickdown(self):
        self._transform = Affine2D().scale(1.0, -1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickvert_path

    _plus_path = Path([[-1.0, 0.0], [1.0, 0.0],
                       [0.0, -1.0], [0.0, 1.0]],
                      [Path.MOVETO, Path.LINETO,
                       Path.MOVETO, Path.LINETO])
    def _set_plus(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._plus_path

    _tri_path = Path([[0.0, 0.0], [0.0, -1.0],
                      [0.0, 0.0], [0.8, 0.5],
                      [0.0, 0.0], [-0.8, 0.5]],
                     [Path.MOVETO, Path.LINETO,
                      Path.MOVETO, Path.LINETO,
                      Path.MOVETO, Path.LINETO])
    def _set_tri_down(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_up(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_left(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(270)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_right(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(180)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]])
    def _set_caretdown(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    def _set_caretup(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(180)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    def _set_caretleft(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(270)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    def _set_caretright(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = 'miter'

    _x_path = Path([[-1.0, -1.0], [1.0, 1.0],
                    [-1.0, 1.0], [1.0, -1.0]],
                   [Path.MOVETO, Path.LINETO,
                    Path.MOVETO, Path.LINETO])
    def _set_x(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._x_path
Exemple #8
0
class Artist(object):
    """
    Abstract base class for someone who renders into a
    :class:`FigureCanvas`.
    """

    aname = 'Artist'
    zorder = 0

    def __init__(self):
        self.figure = None

        self._transform = None
        self._transformSet = False
        self._visible = True
        self._animated = False
        self._alpha = None
        self.clipbox = None
        self._clippath = None
        self._clipon = True
        self._lod = False
        self._label = ''
        self._picker = None
        self._contains = None
        self._rasterized = None
        self._agg_filter = None

        self.eventson = False  # fire events only if eventson
        self._oid = 0  # an observer id
        self._propobservers = {}  # a dict from oids to funcs
        try:
            self.axes = None
        except AttributeError:
            # Handle self.axes as a read-only property, as in Figure.
            pass
        self._remove_method = None
        self._url = None
        self._gid = None
        self._snap = None

    def __getstate__(self):
        d = self.__dict__.copy()
        # remove the unpicklable remove method, this will get re-added on load
        # (by the axes) if the artist lives on an axes.
        d['_remove_method'] = None
        return d

    def remove(self):
        """
        Remove the artist from the figure if possible.  The effect
        will not be visible until the figure is redrawn, e.g., with
        :meth:`matplotlib.axes.Axes.draw_idle`.  Call
        :meth:`matplotlib.axes.Axes.relim` to update the axes limits
        if desired.

        Note: :meth:`~matplotlib.axes.Axes.relim` will not see
        collections even if the collection was added to axes with
        *autolim* = True.

        Note: there is no support for removing the artist's legend entry.
        """

        # There is no method to set the callback.  Instead the parent should
        # set the _remove_method attribute directly.  This would be a
        # protected attribute if Python supported that sort of thing.  The
        # callback has one parameter, which is the child to be removed.
        if self._remove_method is not None:
            self._remove_method(self)
        else:
            raise NotImplementedError('cannot remove artist')
        # TODO: the fix for the collections relim problem is to move the
        # limits calculation into the artist itself, including the property of
        # whether or not the artist should affect the limits.  Then there will
        # be no distinction between axes.add_line, axes.add_patch, etc.
        # TODO: add legend support

    def have_units(self):
        'Return *True* if units are set on the *x* or *y* axes'
        ax = self.axes
        if ax is None or ax.xaxis is None:
            return False
        return ax.xaxis.have_units() or ax.yaxis.have_units()

    def convert_xunits(self, x):
        """For artists in an axes, if the xaxis has units support,
        convert *x* using xaxis unit type
        """
        ax = getattr(self, 'axes', None)
        if ax is None or ax.xaxis is None:
            #print 'artist.convert_xunits no conversion: ax=%s'%ax
            return x
        return ax.xaxis.convert_units(x)

    def convert_yunits(self, y):
        """For artists in an axes, if the yaxis has units support,
        convert *y* using yaxis unit type
        """
        ax = getattr(self, 'axes', None)
        if ax is None or ax.yaxis is None:
            return y
        return ax.yaxis.convert_units(y)

    def set_axes(self, axes):
        """
        Set the :class:`~matplotlib.axes.Axes` instance in which the
        artist resides, if any.

        ACCEPTS: an :class:`~matplotlib.axes.Axes` instance
        """
        self.axes = axes

    def get_axes(self):
        """
        Return the :class:`~matplotlib.axes.Axes` instance the artist
        resides in, or *None*
        """
        return self.axes

    def add_callback(self, func):
        """
        Adds a callback function that will be called whenever one of
        the :class:`Artist`'s properties changes.

        Returns an *id* that is useful for removing the callback with
        :meth:`remove_callback` later.
        """
        oid = self._oid
        self._propobservers[oid] = func
        self._oid += 1
        return oid

    def remove_callback(self, oid):
        """
        Remove a callback based on its *id*.

        .. seealso::

            :meth:`add_callback`
               For adding callbacks

        """
        try:
            del self._propobservers[oid]
        except KeyError:
            pass

    def pchanged(self):
        """
        Fire an event when property changed, calling all of the
        registered callbacks.
        """
        for oid, func in self._propobservers.iteritems():
            func(self)

    def is_transform_set(self):
        """
        Returns *True* if :class:`Artist` has a transform explicitly
        set.
        """
        return self._transformSet

    def set_transform(self, t):
        """
        Set the :class:`~matplotlib.transforms.Transform` instance
        used by this artist.

        ACCEPTS: :class:`~matplotlib.transforms.Transform` instance
        """
        self._transform = t
        self._transformSet = t is not None
        self.pchanged()

    def get_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform`
        instance used by this artist.
        """
        if self._transform is None:
            self._transform = IdentityTransform()
        elif (not isinstance(self._transform, Transform)
              and hasattr(self._transform, '_as_mpl_transform')):
            self._transform = self._transform._as_mpl_transform(self.axes)
        return self._transform

    def hitlist(self, event):
        """
        List the children of the artist which contain the mouse event *event*.
        """
        L = []
        try:
            hascursor, info = self.contains(event)
            if hascursor:
                L.append(self)
        except:
            import traceback
            traceback.print_exc()
            print("while checking", self.__class__)

        for a in self.get_children():
            L.extend(a.hitlist(event))
        return L

    def get_children(self):
        """
        Return a list of the child :class:`Artist`s this
        :class:`Artist` contains.
        """
        return []

    def contains(self, mouseevent):
        """Test whether the artist contains the mouse event.

        Returns the truth value and a dictionary of artist specific details of
        selection, such as which points are contained in the pick radius.  See
        individual artists for details.
        """
        if callable(self._contains):
            return self._contains(self, mouseevent)
        warnings.warn("'%s' needs 'contains' method" % self.__class__.__name__)
        return False, {}

    def set_contains(self, picker):
        """
        Replace the contains test used by this artist. The new picker
        should be a callable function which determines whether the
        artist is hit by the mouse event::

            hit, props = picker(artist, mouseevent)

        If the mouse event is over the artist, return *hit* = *True*
        and *props* is a dictionary of properties you want returned
        with the contains test.

        ACCEPTS: a callable function
        """
        self._contains = picker

    def get_contains(self):
        """
        Return the _contains test used by the artist, or *None* for default.
        """
        return self._contains

    def pickable(self):
        'Return *True* if :class:`Artist` is pickable.'
        return (self.figure is not None and
                self.figure.canvas is not None and
                self._picker is not None)

    def pick(self, mouseevent):
        """
        call signature::

          pick(mouseevent)

        each child artist will fire a pick event if *mouseevent* is over
        the artist and the artist has picker set
        """
        # Pick self
        if self.pickable():
            picker = self.get_picker()
            if callable(picker):
                inside, prop = picker(self, mouseevent)
            else:
                inside, prop = self.contains(mouseevent)
            if inside:
                self.figure.canvas.pick_event(mouseevent, self, **prop)

        # Pick children
        for a in self.get_children():
            # make sure the event happened in the same axes
            ax = getattr(a, 'axes', None)
            if mouseevent.inaxes is None or mouseevent.inaxes == ax:
                # we need to check if mouseevent.inaxes is None
                # because some objects associated with an axes (eg a
                # tick label) can be outside the bounding box of the
                # axes and inaxes will be None
                a.pick(mouseevent)

    def set_picker(self, picker):
        """
        Set the epsilon for picking used by this artist

        *picker* can be one of the following:

          * *None*: picking is disabled for this artist (default)

          * A boolean: if *True* then picking will be enabled and the
            artist will fire a pick event if the mouse event is over
            the artist

          * A float: if picker is a number it is interpreted as an
            epsilon tolerance in points and the artist will fire
            off an event if it's data is within epsilon of the mouse
            event.  For some artists like lines and patch collections,
            the artist may provide additional data to the pick event
            that is generated, e.g. the indices of the data within
            epsilon of the pick event

          * A function: if picker is callable, it is a user supplied
            function which determines whether the artist is hit by the
            mouse event::

              hit, props = picker(artist, mouseevent)

            to determine the hit test.  if the mouse event is over the
            artist, return *hit=True* and props is a dictionary of
            properties you want added to the PickEvent attributes.

        ACCEPTS: [None|float|boolean|callable]
        """
        self._picker = picker

    def get_picker(self):
        'Return the picker object used by this artist'
        return self._picker

    def is_figure_set(self):
        """
        Returns True if the artist is assigned to a
        :class:`~matplotlib.figure.Figure`.
        """
        return self.figure is not None

    def get_url(self):
        """
        Returns the url
        """
        return self._url

    def set_url(self, url):
        """
        Sets the url for the artist

        ACCEPTS: a url string
        """
        self._url = url

    def get_gid(self):
        """
        Returns the group id
        """
        return self._gid

    def set_gid(self, gid):
        """
        Sets the (group) id for the artist

        ACCEPTS: an id string
        """
        self._gid = gid

    def get_snap(self):
        """
        Returns the snap setting which may be:

          * True: snap vertices to the nearest pixel center

          * False: leave vertices as-is

          * None: (auto) If the path contains only rectilinear line
            segments, round to the nearest pixel center

        Only supported by the Agg and MacOSX backends.
        """
        if rcParams['path.snap']:
            return self._snap
        else:
            return False

    def set_snap(self, snap):
        """
        Sets the snap setting which may be:

          * True: snap vertices to the nearest pixel center

          * False: leave vertices as-is

          * None: (auto) If the path contains only rectilinear line
            segments, round to the nearest pixel center

        Only supported by the Agg and MacOSX backends.
        """
        self._snap = snap

    def get_figure(self):
        """
        Return the :class:`~matplotlib.figure.Figure` instance the
        artist belongs to.
        """
        return self.figure

    def set_figure(self, fig):
        """
        Set the :class:`~matplotlib.figure.Figure` instance the artist
        belongs to.

        ACCEPTS: a :class:`matplotlib.figure.Figure` instance
        """
        self.figure = fig
        self.pchanged()

    def set_clip_box(self, clipbox):
        """
        Set the artist's clip :class:`~matplotlib.transforms.Bbox`.

        ACCEPTS: a :class:`matplotlib.transforms.Bbox` instance
        """
        self.clipbox = clipbox
        self.pchanged()

    def set_clip_path(self, path, transform=None):
        """
        Set the artist's clip path, which may be:

          * a :class:`~matplotlib.patches.Patch` (or subclass) instance

          * a :class:`~matplotlib.path.Path` instance, in which case
             an optional :class:`~matplotlib.transforms.Transform`
             instance may be provided, which will be applied to the
             path before using it for clipping.

          * *None*, to remove the clipping path

        For efficiency, if the path happens to be an axis-aligned
        rectangle, this method will set the clipping box to the
        corresponding rectangle and set the clipping path to *None*.

        ACCEPTS: [ (:class:`~matplotlib.path.Path`,
        :class:`~matplotlib.transforms.Transform`) |
        :class:`~matplotlib.patches.Patch` | None ]
        """
        from matplotlib.patches import Patch, Rectangle

        success = False
        if transform is None:
            if isinstance(path, Rectangle):
                self.clipbox = TransformedBbox(Bbox.unit(),
                                              path.get_transform())
                self._clippath = None
                success = True
            elif isinstance(path, Patch):
                self._clippath = TransformedPath(
                    path.get_path(),
                    path.get_transform())
                success = True
            elif isinstance(path, tuple):
                path, transform = path

        if path is None:
            self._clippath = None
            success = True
        elif isinstance(path, Path):
            self._clippath = TransformedPath(path, transform)
            success = True
        elif isinstance(path, TransformedPath):
            self._clippath = path
            success = True

        if not success:
            print(type(path), type(transform))
            raise TypeError("Invalid arguments to set_clip_path")

        self.pchanged()

    def get_alpha(self):
        """
        Return the alpha value used for blending - not supported on all
        backends
        """
        return self._alpha

    def get_visible(self):
        "Return the artist's visiblity"
        return self._visible

    def get_animated(self):
        "Return the artist's animated state"
        return self._animated

    def get_clip_on(self):
        'Return whether artist uses clipping'
        return self._clipon

    def get_clip_box(self):
        'Return artist clipbox'
        return self.clipbox

    def get_clip_path(self):
        'Return artist clip path'
        return self._clippath

    def get_transformed_clip_path_and_affine(self):
        '''
        Return the clip path with the non-affine part of its
        transformation applied, and the remaining affine part of its
        transformation.
        '''
        if self._clippath is not None:
            return self._clippath.get_transformed_path_and_affine()
        return None, None

    def set_clip_on(self, b):
        """
        Set whether artist uses clipping.

        ACCEPTS: [True | False]
        """
        self._clipon = b
        self.pchanged()

    def _set_gc_clip(self, gc):
        'Set the clip properly for the gc'
        if self._clipon:
            if self.clipbox is not None:
                gc.set_clip_rectangle(self.clipbox)
            gc.set_clip_path(self._clippath)
        else:
            gc.set_clip_rectangle(None)
            gc.set_clip_path(None)

    def get_rasterized(self):
        "return True if the artist is to be rasterized"
        return self._rasterized

    def set_rasterized(self, rasterized):
        """
        Force rasterized (bitmap) drawing in vector backend output.

        Defaults to None, which implies the backend's default behavior

        ACCEPTS: [True | False | None]
        """
        if rasterized and not hasattr(self.draw, "_supports_rasterization"):
            warnings.warn("Rasterization of '%s' will be ignored" % self)

        self._rasterized = rasterized

    def get_agg_filter(self):
        "return filter function to be used for agg filter"
        return self._agg_filter

    def set_agg_filter(self, filter_func):
        """
        set agg_filter fuction.

        """
        self._agg_filter = filter_func

    def draw(self, renderer, *args, **kwargs):
        'Derived classes drawing method'
        if not self.get_visible():
            return

    def set_alpha(self, alpha):
        """
        Set the alpha value used for blending - not supported on
        all backends.

        ACCEPTS: float (0.0 transparent through 1.0 opaque)
        """
        self._alpha = alpha
        self.pchanged()

    def set_lod(self, on):
        """
        Set Level of Detail on or off.  If on, the artists may examine
        things like the pixel width of the axes and draw a subset of
        their contents accordingly

        ACCEPTS: [True | False]
        """
        self._lod = on
        self.pchanged()

    def set_visible(self, b):
        """
        Set the artist's visiblity.

        ACCEPTS: [True | False]
        """
        self._visible = b
        self.pchanged()

    def set_animated(self, b):
        """
        Set the artist's animation state.

        ACCEPTS: [True | False]
        """
        self._animated = b
        self.pchanged()

    def update(self, props):
        """
        Update the properties of this :class:`Artist` from the
        dictionary *prop*.
        """
        store = self.eventson
        self.eventson = False
        changed = False
        for k, v in props.iteritems():
            func = getattr(self, 'set_' + k, None)
            if func is None or not callable(func):
                raise AttributeError('Unknown property %s' % k)
            func(v)
            changed = True
        self.eventson = store
        if changed:
            self.pchanged()

    def get_label(self):
        """
        Get the label used for this artist in the legend.
        """
        return self._label

    def set_label(self, s):
        """
        Set the label to *s* for auto legend.

        ACCEPTS: string or anything printable with '%s' conversion.
        """
        self._label = '%s' % (s, )
        self.pchanged()

    def get_zorder(self):
        """
        Return the :class:`Artist`'s zorder.
        """
        return self.zorder

    def set_zorder(self, level):
        """
        Set the zorder for the artist.  Artists with lower zorder
        values are drawn first.

        ACCEPTS: any number
        """
        self.zorder = level
        self.pchanged()

    def update_from(self, other):
        'Copy properties from *other* to *self*.'
        self._transform = other._transform
        self._transformSet = other._transformSet
        self._visible = other._visible
        self._alpha = other._alpha
        self.clipbox = other.clipbox
        self._clipon = other._clipon
        self._clippath = other._clippath
        self._lod = other._lod
        self._label = other._label
        self.pchanged()

    def properties(self):
        """
        return a dictionary mapping property name -> value for all Artist props
        """
        return ArtistInspector(self).properties()

    def set(self, **kwargs):
        """
        A tkstyle set command, pass *kwargs* to set properties
        """
        ret = []
        for k, v in kwargs.iteritems():
            k = k.lower()
            funcName = "set_%s" % k
            func = getattr(self, funcName)
            ret.extend([func(v)])
        return ret

    def findobj(self, match=None, include_self=True):
        """
        Find artist objects.

        pyplot signature:
          findobj(o=gcf(), match=None, include_self=True)

        Recursively find all :class:matplotlib.artist.Artist instances
        contained in self.

        *match* can be

          - None: return all objects contained in artist.

          - function with signature ``boolean = match(artist)``
            used to filter matches

          - class instance: eg Line2D.  Only return artists of class type.

        If *include_self* is True (default), include self in the list to be
        checked for a match.

        .. plot:: mpl_examples/pylab_examples/findobj_demo.py
        """

        if match is None:  # always return True
            def matchfunc(x):
                return True
        elif cbook.issubclass_safe(match, Artist):
            def matchfunc(x):
                return isinstance(x, match)
        elif callable(match):
            matchfunc = match
        else:
            raise ValueError('match must be None, a matplotlib.artist.Artist '
                             'subclass, or a callable')

        artists = []

        for c in self.get_children():
            if matchfunc(c):
                artists.append(c)
            artists.extend([thisc for thisc in
                                c.findobj(matchfunc, include_self=False)
                                                     if matchfunc(thisc)])

        if include_self and matchfunc(self):
            artists.append(self)
        return artists
Exemple #9
0
 def get_transform(self):
     """
     The transform for linear scaling is just the
     :class:`~matplotlib.transforms.IdentityTransform`.
     """
     return IdentityTransform()
Exemple #10
0
 def get_transform(self):
     return IdentityTransform()
Exemple #11
0
class MarkerStyle(object):

    markers = {
        ".": "point",
        ",": "pixel",
        "o": "circle",
        "v": "triangle_down",
        "^": "triangle_up",
        "<": "triangle_left",
        ">": "triangle_right",
        "1": "tri_down",
        "2": "tri_up",
        "3": "tri_left",
        "4": "tri_right",
        "8": "octagon",
        "s": "square",
        "p": "pentagon",
        "*": "star",
        "h": "hexagon1",
        "H": "hexagon2",
        "+": "plus",
        "x": "x",
        "D": "diamond",
        "d": "thin_diamond",
        "|": "vline",
        "_": "hline",
        TICKLEFT: "tickleft",
        TICKRIGHT: "tickright",
        TICKUP: "tickup",
        TICKDOWN: "tickdown",
        CARETLEFT: "caretleft",
        CARETRIGHT: "caretright",
        CARETUP: "caretup",
        CARETDOWN: "caretdown",
        "None": "nothing",
        None: "nothing",
        " ": "nothing",
        "": "nothing",
    }

    # Just used for informational purposes.  is_filled()
    # is calculated in the _set_* functions.
    filled_markers = ("o", "v", "^", "<", ">", "8", "s", "p", "*", "h", "H", "D", "d")

    fillstyles = ("full", "left", "right", "bottom", "top", "none")
    _half_fillstyles = ("left", "right", "bottom", "top")

    # TODO: Is this ever used as a non-constant?
    _point_size_reduction = 0.5

    def __init__(self, marker=None, fillstyle="full"):
        """
        MarkerStyle

        Attributes
        ----------
        markers : list of known markes

        fillstyles : list of known fillstyles

        filled_markers : list of known filled markers.

        Parameters
        ----------
        marker : string or array_like, optional, default: None
            See the descriptions of possible markers in the module docstring.

        fillstyle : string, optional, default: 'full'
            'full', 'left", 'right', 'bottom', 'top', 'none'
        """
        self._fillstyle = fillstyle
        self.set_marker(marker)
        self.set_fillstyle(fillstyle)

    def __getstate__(self):
        d = self.__dict__.copy()
        d.pop("_marker_function")
        return d

    def __setstate__(self, statedict):
        self.__dict__ = statedict
        self.set_marker(self._marker)
        self._recache()

    def _recache(self):
        self._path = Path(np.empty((0, 2)))
        self._transform = IdentityTransform()
        self._alt_path = None
        self._alt_transform = None
        self._snap_threshold = None
        self._joinstyle = "round"
        self._capstyle = "butt"
        self._filled = True
        self._marker_function()

    def __nonzero__(self):
        return bool(len(self._path.vertices))

    def is_filled(self):
        return self._filled

    def get_fillstyle(self):
        return self._fillstyle

    def set_fillstyle(self, fillstyle):
        """
        Sets fillstyle

        Parameters
        ----------
        fillstyle : string amongst known fillstyles
        """
        if fillstyle not in self.fillstyles:
            raise ValueError("Unrecognized fillstyle %s" % " ".join(self.fillstyles))
        self._fillstyle = fillstyle
        self._recache()

    def get_joinstyle(self):
        return self._joinstyle

    def get_capstyle(self):
        return self._capstyle

    def get_marker(self):
        return self._marker

    def set_marker(self, marker):
        if iterable(marker) and len(marker) in (2, 3) and marker[1] in (0, 1, 2, 3):
            self._marker_function = self._set_tuple_marker
        elif isinstance(marker, np.ndarray):
            self._marker_function = self._set_vertices
        elif marker in self.markers:
            self._marker_function = getattr(self, "_set_" + self.markers[marker])
        elif is_string_like(marker) and is_math_text(marker):
            self._marker_function = self._set_mathtext_path
        elif isinstance(marker, Path):
            self._marker_function = self._set_path_marker
        else:
            try:
                Path(marker)
                self._marker_function = self._set_vertices
            except ValueError:
                raise ValueError("Unrecognized marker style {}".format(marker))

        self._marker = marker
        self._recache()

    def get_path(self):
        return self._path

    def get_transform(self):
        return self._transform.frozen()

    def get_alt_path(self):
        return self._alt_path

    def get_alt_transform(self):
        return self._alt_transform.frozen()

    def get_snap_threshold(self):
        return self._snap_threshold

    def _set_nothing(self):
        self._filled = False

    def _set_custom_marker(self, path):
        verts = path.vertices
        rescale = max(np.max(np.abs(verts[:, 0])), np.max(np.abs(verts[:, 1])))
        self._transform = Affine2D().scale(1.0 / rescale)
        self._path = path

    def _set_path_marker(self):
        self._set_custom_marker(self._marker)

    def _set_vertices(self):
        verts = self._marker
        marker = Path(verts)
        self._set_custom_marker(marker)

    def _set_tuple_marker(self):
        marker = self._marker
        if is_numlike(marker[0]):
            if len(marker) == 2:
                numsides, rotation = marker[0], 0.0
            elif len(marker) == 3:
                numsides, rotation = marker[0], marker[2]
            symstyle = marker[1]
            if symstyle == 0:
                self._path = Path.unit_regular_polygon(numsides)
                self._joinstyle = "miter"
            elif symstyle == 1:
                self._path = Path.unit_regular_star(numsides)
                self._joinstyle = "bevel"
            elif symstyle == 2:
                self._path = Path.unit_regular_asterisk(numsides)
                self._filled = False
                self._joinstyle = "bevel"
            elif symstyle == 3:
                self._path = Path.unit_circle()
            self._transform = Affine2D().scale(0.5).rotate_deg(rotation)
        else:
            verts = np.asarray(marker[0])
            path = Path(verts)
            self._set_custom_marker(path)

    def _set_mathtext_path(self):
        """
        Draws mathtext markers '$...$' using TextPath object.

        Submitted by tcb
        """
        from matplotlib.text import TextPath
        from matplotlib.font_manager import FontProperties

        # again, the properties could be initialised just once outside
        # this function
        # Font size is irrelevant here, it will be rescaled based on
        # the drawn size later
        props = FontProperties(size=1.0)
        text = TextPath(xy=(0, 0), s=self.get_marker(), fontproperties=props, usetex=rcParams["text.usetex"])
        if len(text.vertices) == 0:
            return

        xmin, ymin = text.vertices.min(axis=0)
        xmax, ymax = text.vertices.max(axis=0)
        width = xmax - xmin
        height = ymax - ymin
        max_dim = max(width, height)
        self._transform = Affine2D().translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height).scale(1.0 / max_dim)
        self._path = text
        self._snap = False

    def _half_fill(self):
        fs = self.get_fillstyle()
        result = fs in self._half_fillstyles
        return result

    def _set_circle(self, reduction=1.0):
        self._transform = Affine2D().scale(0.5 * reduction)
        self._snap_threshold = 6.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_circle()
        else:
            # build a right-half circle
            if fs == "bottom":
                rotate = 270.0
            elif fs == "top":
                rotate = 90.0
            elif fs == "left":
                rotate = 180.0
            else:
                rotate = 0.0

            self._path = self._alt_path = Path.unit_circle_righthalf()
            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform.frozen().rotate_deg(180.0)

    def _set_pixel(self):
        self._path = Path.unit_rectangle()
        # Ideally, you'd want -0.5, -0.5 here, but then the snapping
        # algorithm in the Agg backend will round this to a 2x2
        # rectangle from (-1, -1) to (1, 1).  By offsetting it
        # slightly, we can force it to be (0, 0) to (1, 1), which both
        # makes it only be a single pixel and places it correctly
        # aligned to 1-width stroking (i.e. the ticks).  This hack is
        # the best of a number of bad alternatives, mainly because the
        # backends are not aware of what marker is actually being used
        # beyond just its path data.
        self._transform = Affine2D().translate(-0.49999, -0.49999)
        self._snap_threshold = None

    def _set_point(self):
        self._set_circle(reduction=self._point_size_reduction)

    _triangle_path = Path(
        [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]
    )
    # Going down halfway looks to small.  Golden ratio is too far.
    _triangle_path_u = Path(
        [[0.0, 1.0], [-3 / 5.0, -1 / 5.0], [3 / 5.0, -1 / 5.0], [0.0, 1.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY],
    )
    _triangle_path_d = Path(
        [[-3 / 5.0, -1 / 5.0], [3 / 5.0, -1 / 5.0], [1.0, -1.0], [-1.0, -1.0], [-3 / 5.0, -1 / 5.0]],
        [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY],
    )
    _triangle_path_l = Path(
        [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]
    )
    _triangle_path_r = Path(
        [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]
    )

    def _set_triangle(self, rot, skip):
        self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot)
        self._snap_threshold = 5.0
        fs = self.get_fillstyle()

        if not self._half_fill():
            self._path = self._triangle_path
        else:
            mpaths = [self._triangle_path_u, self._triangle_path_l, self._triangle_path_d, self._triangle_path_r]

            if fs == "top":
                self._path = mpaths[(0 + skip) % 4]
                self._alt_path = mpaths[(2 + skip) % 4]
            elif fs == "bottom":
                self._path = mpaths[(2 + skip) % 4]
                self._alt_path = mpaths[(0 + skip) % 4]
            elif fs == "left":
                self._path = mpaths[(1 + skip) % 4]
                self._alt_path = mpaths[(3 + skip) % 4]
            else:
                self._path = mpaths[(3 + skip) % 4]
                self._alt_path = mpaths[(1 + skip) % 4]

            self._alt_transform = self._transform

        self._joinstyle = "miter"

    def _set_triangle_up(self):
        return self._set_triangle(0.0, 0)

    def _set_triangle_down(self):
        return self._set_triangle(180.0, 2)

    def _set_triangle_left(self):
        return self._set_triangle(90.0, 3)

    def _set_triangle_right(self):
        return self._set_triangle(270.0, 1)

    def _set_square(self):
        self._transform = Affine2D().translate(-0.5, -0.5)
        self._snap_threshold = 2.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_rectangle()
        else:
            # build a bottom filled square out of two rectangles, one
            # filled.  Use the rotation to support left, right, bottom
            # or top
            if fs == "bottom":
                rotate = 0.0
            elif fs == "top":
                rotate = 180.0
            elif fs == "left":
                rotate = 270.0
            else:
                rotate = 90.0

            self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5], [0.0, 0.0]])
            self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0], [0.0, 0.5]])
            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform

        self._joinstyle = "miter"

    def _set_diamond(self):
        self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45)
        self._snap_threshold = 5.0
        fs = self.get_fillstyle()
        if not self._half_fill():
            self._path = Path.unit_rectangle()
        else:
            self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]])
            self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, 0.0]])

            if fs == "bottom":
                rotate = 270.0
            elif fs == "top":
                rotate = 90.0
            elif fs == "left":
                rotate = 180.0
            else:
                rotate = 0.0

            self._transform.rotate_deg(rotate)
            self._alt_transform = self._transform

        self._joinstyle = "miter"

    def _set_thin_diamond(self):
        self._set_diamond()
        self._transform.scale(0.6, 1.0)

    def _set_pentagon(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        polypath = Path.unit_regular_polygon(5)
        fs = self.get_fillstyle()

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            y = (1 + np.sqrt(5)) / 4.0
            top = Path([verts[0], verts[1], verts[4], verts[0]])
            bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]])
            left = Path([verts[0], verts[1], verts[2], [0, -y], verts[0]])
            right = Path([verts[0], verts[4], verts[3], [0, -y], verts[0]])

            if fs == "top":
                mpath, mpath_alt = top, bottom
            elif fs == "bottom":
                mpath, mpath_alt = bottom, top
            elif fs == "left":
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left
            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = "miter"

    def _set_star(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_star(5, innerCircle=0.381966)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            top = Path(np.vstack((verts[0:4, :], verts[7:10, :], verts[0])))
            bottom = Path(np.vstack((verts[3:8, :], verts[3])))
            left = Path(np.vstack((verts[0:6, :], verts[0])))
            right = Path(np.vstack((verts[0], verts[5:10, :], verts[0])))

            if fs == "top":
                mpath, mpath_alt = top, bottom
            elif fs == "bottom":
                mpath, mpath_alt = bottom, top
            elif fs == "left":
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left
            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = "bevel"

    def _set_hexagon1(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(6)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            # not drawing inside lines
            x = np.abs(np.cos(5 * np.pi / 6.0))
            top = Path(np.vstack(([-x, 0], verts[(1, 0, 5), :], [x, 0])))
            bottom = Path(np.vstack(([-x, 0], verts[2:5, :], [x, 0])))
            left = Path(verts[(0, 1, 2, 3), :])
            right = Path(verts[(0, 5, 4, 3), :])

            if fs == "top":
                mpath, mpath_alt = top, bottom
            elif fs == "bottom":
                mpath, mpath_alt = bottom, top
            elif fs == "left":
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left

            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = "miter"

    def _set_hexagon2(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(30)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(6)

        if not self._half_fill():
            self._path = polypath
        else:
            verts = polypath.vertices

            # not drawing inside lines
            x, y = np.sqrt(3) / 4, 3 / 4.0
            top = Path(verts[(1, 0, 5, 4, 1), :])
            bottom = Path(verts[(1, 2, 3, 4), :])
            left = Path(np.vstack(([x, y], verts[(0, 1, 2), :], [-x, -y], [x, y])))
            right = Path(np.vstack(([x, y], verts[(5, 4, 3), :], [-x, -y])))

            if fs == "top":
                mpath, mpath_alt = top, bottom
            elif fs == "bottom":
                mpath, mpath_alt = bottom, top
            elif fs == "left":
                mpath, mpath_alt = left, right
            else:
                mpath, mpath_alt = right, left

            self._path = mpath
            self._alt_path = mpath_alt
            self._alt_transform = self._transform

        self._joinstyle = "miter"

    def _set_octagon(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0

        fs = self.get_fillstyle()
        polypath = Path.unit_regular_polygon(8)

        if not self._half_fill():
            self._transform.rotate_deg(22.5)
            self._path = polypath
        else:
            x = np.sqrt(2.0) / 4.0
            half = Path([[0, -1], [0, 1], [-x, 1], [-1, x], [-1, -x], [-x, -1], [0, -1]])

            if fs == "bottom":
                rotate = 90.0
            elif fs == "top":
                rotate = 270.0
            elif fs == "right":
                rotate = 180.0
            else:
                rotate = 0.0

            self._transform.rotate_deg(rotate)
            self._path = self._alt_path = half
            self._alt_transform = self._transform.frozen().rotate_deg(180.0)

        self._joinstyle = "miter"

    _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]])

    def _set_vline(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._line_marker_path

    def _set_hline(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._line_marker_path

    _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]])

    def _set_tickleft(self):
        self._transform = Affine2D().scale(-1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickhoriz_path

    def _set_tickright(self):
        self._transform = Affine2D().scale(1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickhoriz_path

    _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]])

    def _set_tickup(self):
        self._transform = Affine2D().scale(1.0, 1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickvert_path

    def _set_tickdown(self):
        self._transform = Affine2D().scale(1.0, -1.0)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._tickvert_path

    _plus_path = Path(
        [[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]
    )

    def _set_plus(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 1.0
        self._filled = False
        self._path = self._plus_path

    _tri_path = Path(
        [[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]],
        [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO],
    )

    def _set_tri_down(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_up(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_left(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(270)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    def _set_tri_right(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(180)
        self._snap_threshold = 5.0
        self._filled = False
        self._path = self._tri_path

    _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]])

    def _set_caretdown(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = "miter"

    def _set_caretup(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(180)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = "miter"

    def _set_caretleft(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(270)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = "miter"

    def _set_caretright(self):
        self._transform = Affine2D().scale(0.5).rotate_deg(90)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._caret_path
        self._joinstyle = "miter"

    _x_path = Path(
        [[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]
    )

    def _set_x(self):
        self._transform = Affine2D().scale(0.5)
        self._snap_threshold = 3.0
        self._filled = False
        self._path = self._x_path
class Artist(object):
    """
    Abstract base class for someone who renders into a
    :class:`FigureCanvas`.
    """

    aname = 'Artist'
    zorder = 0

    def __init__(self):
        self.figure = None

        self._transform = None
        self._transformSet = False
        self._visible = True
        self._animated = False
        self._alpha = None
        self.clipbox = None
        self._clippath = None
        self._clipon = True
        self._lod = False
        self._label = ''
        self._picker = None
        self._contains = None
        self._rasterized = None
        self._agg_filter = None

        self.eventson = False  # fire events only if eventson
        self._oid = 0  # an observer id
        self._propobservers = {}  # a dict from oids to funcs
        try:
            self.axes = None
        except AttributeError:
            # Handle self.axes as a read-only property, as in Figure.
            pass
        self._remove_method = None
        self._url = None
        self._gid = None
        self._snap = None
        self._sketch = rcParams['path.sketch']
        self._path_effects = rcParams['path.effects']

    def __getstate__(self):
        d = self.__dict__.copy()
        # remove the unpicklable remove method, this will get re-added on load
        # (by the axes) if the artist lives on an axes.
        d['_remove_method'] = None
        return d

    def remove(self):
        """
        Remove the artist from the figure if possible.  The effect
        will not be visible until the figure is redrawn, e.g., with
        :meth:`matplotlib.axes.Axes.draw_idle`.  Call
        :meth:`matplotlib.axes.Axes.relim` to update the axes limits
        if desired.

        Note: :meth:`~matplotlib.axes.Axes.relim` will not see
        collections even if the collection was added to axes with
        *autolim* = True.

        Note: there is no support for removing the artist's legend entry.
        """

        # There is no method to set the callback.  Instead the parent should
        # set the _remove_method attribute directly.  This would be a
        # protected attribute if Python supported that sort of thing.  The
        # callback has one parameter, which is the child to be removed.
        if self._remove_method is not None:
            self._remove_method(self)
        else:
            raise NotImplementedError('cannot remove artist')
        # TODO: the fix for the collections relim problem is to move the
        # limits calculation into the artist itself, including the property of
        # whether or not the artist should affect the limits.  Then there will
        # be no distinction between axes.add_line, axes.add_patch, etc.
        # TODO: add legend support

    def have_units(self):
        'Return *True* if units are set on the *x* or *y* axes'
        ax = self.axes
        if ax is None or ax.xaxis is None:
            return False
        return ax.xaxis.have_units() or ax.yaxis.have_units()

    def convert_xunits(self, x):
        """For artists in an axes, if the xaxis has units support,
        convert *x* using xaxis unit type
        """
        ax = getattr(self, 'axes', None)
        if ax is None or ax.xaxis is None:
            #print 'artist.convert_xunits no conversion: ax=%s'%ax
            return x
        return ax.xaxis.convert_units(x)

    def convert_yunits(self, y):
        """For artists in an axes, if the yaxis has units support,
        convert *y* using yaxis unit type
        """
        ax = getattr(self, 'axes', None)
        if ax is None or ax.yaxis is None:
            return y
        return ax.yaxis.convert_units(y)

    def set_axes(self, axes):
        """
        Set the :class:`~matplotlib.axes.Axes` instance in which the
        artist resides, if any.

        ACCEPTS: an :class:`~matplotlib.axes.Axes` instance
        """
        self.axes = axes

    def get_axes(self):
        """
        Return the :class:`~matplotlib.axes.Axes` instance the artist
        resides in, or *None*
        """
        return self.axes

    def get_window_extent(self, renderer):
        """
        Get the axes bounding box in display space.
        Subclasses should override for inclusion in the bounding box
        "tight" calculation. Default is to return an empty bounding
        box at 0, 0.
        """
        return Bbox([[0, 0], [0, 0]])

    def add_callback(self, func):
        """
        Adds a callback function that will be called whenever one of
        the :class:`Artist`'s properties changes.

        Returns an *id* that is useful for removing the callback with
        :meth:`remove_callback` later.
        """
        oid = self._oid
        self._propobservers[oid] = func
        self._oid += 1
        return oid

    def remove_callback(self, oid):
        """
        Remove a callback based on its *id*.

        .. seealso::

            :meth:`add_callback`
               For adding callbacks

        """
        try:
            del self._propobservers[oid]
        except KeyError:
            pass

    def pchanged(self):
        """
        Fire an event when property changed, calling all of the
        registered callbacks.
        """
        for oid, func in self._propobservers.iteritems():
            func(self)

    def is_transform_set(self):
        """
        Returns *True* if :class:`Artist` has a transform explicitly
        set.
        """
        return self._transformSet

    def set_transform(self, t):
        """
        Set the :class:`~matplotlib.transforms.Transform` instance
        used by this artist.

        ACCEPTS: :class:`~matplotlib.transforms.Transform` instance
        """
        self._transform = t
        self._transformSet = True
        self.pchanged()

    def get_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform`
        instance used by this artist.
        """
        if self._transform is None:
            self._transform = IdentityTransform()
        elif (not isinstance(self._transform, Transform)
              and hasattr(self._transform, '_as_mpl_transform')):
            self._transform = self._transform._as_mpl_transform(self.axes)
        return self._transform

    def hitlist(self, event):
        """
        List the children of the artist which contain the mouse event *event*.
        """
        L = []
        try:
            hascursor, info = self.contains(event)
            if hascursor:
                L.append(self)
        except:
            import traceback
            traceback.print_exc()
            print("while checking", self.__class__)

        for a in self.get_children():
            L.extend(a.hitlist(event))
        return L

    def get_children(self):
        """
        Return a list of the child :class:`Artist`s this
        :class:`Artist` contains.
        """
        return []

    def contains(self, mouseevent):
        """Test whether the artist contains the mouse event.

        Returns the truth value and a dictionary of artist specific details of
        selection, such as which points are contained in the pick radius.  See
        individual artists for details.
        """
        if callable(self._contains):
            return self._contains(self, mouseevent)
        warnings.warn("'%s' needs 'contains' method" % self.__class__.__name__)
        return False, {}

    def set_contains(self, picker):
        """
        Replace the contains test used by this artist. The new picker
        should be a callable function which determines whether the
        artist is hit by the mouse event::

            hit, props = picker(artist, mouseevent)

        If the mouse event is over the artist, return *hit* = *True*
        and *props* is a dictionary of properties you want returned
        with the contains test.

        ACCEPTS: a callable function
        """
        self._contains = picker

    def get_contains(self):
        """
        Return the _contains test used by the artist, or *None* for default.
        """
        return self._contains

    def pickable(self):
        'Return *True* if :class:`Artist` is pickable.'
        return (self.figure is not None and self.figure.canvas is not None
                and self._picker is not None)

    def pick(self, mouseevent):
        """
        call signature::

          pick(mouseevent)

        each child artist will fire a pick event if *mouseevent* is over
        the artist and the artist has picker set
        """
        # Pick self
        if self.pickable():
            picker = self.get_picker()
            if callable(picker):
                inside, prop = picker(self, mouseevent)
            else:
                inside, prop = self.contains(mouseevent)
            if inside:
                self.figure.canvas.pick_event(mouseevent, self, **prop)

        # Pick children
        for a in self.get_children():
            # make sure the event happened in the same axes
            ax = getattr(a, 'axes', None)
            if mouseevent.inaxes is None or mouseevent.inaxes == ax:
                # we need to check if mouseevent.inaxes is None
                # because some objects associated with an axes (e.g., a
                # tick label) can be outside the bounding box of the
                # axes and inaxes will be None
                a.pick(mouseevent)

    def set_picker(self, picker):
        """
        Set the epsilon for picking used by this artist

        *picker* can be one of the following:

          * *None*: picking is disabled for this artist (default)

          * A boolean: if *True* then picking will be enabled and the
            artist will fire a pick event if the mouse event is over
            the artist

          * A float: if picker is a number it is interpreted as an
            epsilon tolerance in points and the artist will fire
            off an event if it's data is within epsilon of the mouse
            event.  For some artists like lines and patch collections,
            the artist may provide additional data to the pick event
            that is generated, e.g., the indices of the data within
            epsilon of the pick event

          * A function: if picker is callable, it is a user supplied
            function which determines whether the artist is hit by the
            mouse event::

              hit, props = picker(artist, mouseevent)

            to determine the hit test.  if the mouse event is over the
            artist, return *hit=True* and props is a dictionary of
            properties you want added to the PickEvent attributes.

        ACCEPTS: [None|float|boolean|callable]
        """
        self._picker = picker

    def get_picker(self):
        'Return the picker object used by this artist'
        return self._picker

    def is_figure_set(self):
        """
        Returns True if the artist is assigned to a
        :class:`~matplotlib.figure.Figure`.
        """
        return self.figure is not None

    def get_url(self):
        """
        Returns the url
        """
        return self._url

    def set_url(self, url):
        """
        Sets the url for the artist

        ACCEPTS: a url string
        """
        self._url = url

    def get_gid(self):
        """
        Returns the group id
        """
        return self._gid

    def set_gid(self, gid):
        """
        Sets the (group) id for the artist

        ACCEPTS: an id string
        """
        self._gid = gid

    def get_snap(self):
        """
        Returns the snap setting which may be:

          * True: snap vertices to the nearest pixel center

          * False: leave vertices as-is

          * None: (auto) If the path contains only rectilinear line
            segments, round to the nearest pixel center

        Only supported by the Agg and MacOSX backends.
        """
        if rcParams['path.snap']:
            return self._snap
        else:
            return False

    def set_snap(self, snap):
        """
        Sets the snap setting which may be:

          * True: snap vertices to the nearest pixel center

          * False: leave vertices as-is

          * None: (auto) If the path contains only rectilinear line
            segments, round to the nearest pixel center

        Only supported by the Agg and MacOSX backends.
        """
        self._snap = snap

    def get_sketch_params(self):
        """
        Returns the sketch parameters for the artist.

        Returns
        -------
        sketch_params : tuple or `None`

        A 3-tuple with the following elements:

          * `scale`: The amplitude of the wiggle perpendicular to the
            source line.

          * `length`: The length of the wiggle along the line.

          * `randomness`: The scale factor by which the length is
            shrunken or expanded.

        May return `None` if no sketch parameters were set.
        """
        return self._sketch

    def set_sketch_params(self, scale=None, length=None, randomness=None):
        """
        Sets the the sketch parameters.

        Parameters
        ----------

        scale : float, optional
            The amplitude of the wiggle perpendicular to the source
            line, in pixels.  If scale is `None`, or not provided, no
            sketch filter will be provided.

        length : float, optional
             The length of the wiggle along the line, in pixels
             (default 128.0)

        randomness : float, optional
            The scale factor by which the length is shrunken or
            expanded (default 16.0)
        """
        if scale is None:
            self._sketch = None
        else:
            self._sketch = (scale, length or 128.0, randomness or 16.0)

    def set_path_effects(self, path_effects):
        """
        set path_effects, which should be a list of instances of
        matplotlib.patheffect._Base class or its derivatives.
        """
        self._path_effects = path_effects

    def get_path_effects(self):
        return self._path_effects

    def get_figure(self):
        """
        Return the :class:`~matplotlib.figure.Figure` instance the
        artist belongs to.
        """
        return self.figure

    def set_figure(self, fig):
        """
        Set the :class:`~matplotlib.figure.Figure` instance the artist
        belongs to.

        ACCEPTS: a :class:`matplotlib.figure.Figure` instance
        """
        self.figure = fig
        self.pchanged()

    def set_clip_box(self, clipbox):
        """
        Set the artist's clip :class:`~matplotlib.transforms.Bbox`.

        ACCEPTS: a :class:`matplotlib.transforms.Bbox` instance
        """
        self.clipbox = clipbox
        self.pchanged()

    def set_clip_path(self, path, transform=None):
        """
        Set the artist's clip path, which may be:

          * a :class:`~matplotlib.patches.Patch` (or subclass) instance

          * a :class:`~matplotlib.path.Path` instance, in which case
             an optional :class:`~matplotlib.transforms.Transform`
             instance may be provided, which will be applied to the
             path before using it for clipping.

          * *None*, to remove the clipping path

        For efficiency, if the path happens to be an axis-aligned
        rectangle, this method will set the clipping box to the
        corresponding rectangle and set the clipping path to *None*.

        ACCEPTS: [ (:class:`~matplotlib.path.Path`,
        :class:`~matplotlib.transforms.Transform`) |
        :class:`~matplotlib.patches.Patch` | None ]
        """
        from matplotlib.patches import Patch, Rectangle

        success = False
        if transform is None:
            if isinstance(path, Rectangle):
                self.clipbox = TransformedBbox(Bbox.unit(),
                                               path.get_transform())
                self._clippath = None
                success = True
            elif isinstance(path, Patch):
                self._clippath = TransformedPath(path.get_path(),
                                                 path.get_transform())
                success = True
            elif isinstance(path, tuple):
                path, transform = path

        if path is None:
            self._clippath = None
            success = True
        elif isinstance(path, Path):
            self._clippath = TransformedPath(path, transform)
            success = True
        elif isinstance(path, TransformedPath):
            self._clippath = path
            success = True

        if not success:
            print(type(path), type(transform))
            raise TypeError("Invalid arguments to set_clip_path")

        self.pchanged()

    def get_alpha(self):
        """
        Return the alpha value used for blending - not supported on all
        backends
        """
        return self._alpha

    def get_visible(self):
        "Return the artist's visiblity"
        return self._visible

    def get_animated(self):
        "Return the artist's animated state"
        return self._animated

    def get_clip_on(self):
        'Return whether artist uses clipping'
        return self._clipon

    def get_clip_box(self):
        'Return artist clipbox'
        return self.clipbox

    def get_clip_path(self):
        'Return artist clip path'
        return self._clippath

    def get_transformed_clip_path_and_affine(self):
        '''
        Return the clip path with the non-affine part of its
        transformation applied, and the remaining affine part of its
        transformation.
        '''
        if self._clippath is not None:
            return self._clippath.get_transformed_path_and_affine()
        return None, None

    def set_clip_on(self, b):
        """
        Set whether artist uses clipping.

        ACCEPTS: [True | False]
        """
        self._clipon = b
        self.pchanged()

    def _set_gc_clip(self, gc):
        'Set the clip properly for the gc'
        if self._clipon:
            if self.clipbox is not None:
                gc.set_clip_rectangle(self.clipbox)
            gc.set_clip_path(self._clippath)
        else:
            gc.set_clip_rectangle(None)
            gc.set_clip_path(None)

    def get_rasterized(self):
        "return True if the artist is to be rasterized"
        return self._rasterized

    def set_rasterized(self, rasterized):
        """
        Force rasterized (bitmap) drawing in vector backend output.

        Defaults to None, which implies the backend's default behavior

        ACCEPTS: [True | False | None]
        """
        if rasterized and not hasattr(self.draw, "_supports_rasterization"):
            warnings.warn("Rasterization of '%s' will be ignored" % self)

        self._rasterized = rasterized

    def get_agg_filter(self):
        "return filter function to be used for agg filter"
        return self._agg_filter

    def set_agg_filter(self, filter_func):
        """
        set agg_filter fuction.

        """
        self._agg_filter = filter_func

    def draw(self, renderer, *args, **kwargs):
        'Derived classes drawing method'
        if not self.get_visible():
            return

    def set_alpha(self, alpha):
        """
        Set the alpha value used for blending - not supported on
        all backends.

        ACCEPTS: float (0.0 transparent through 1.0 opaque)
        """
        self._alpha = alpha
        self.pchanged()

    def set_lod(self, on):
        """
        Set Level of Detail on or off.  If on, the artists may examine
        things like the pixel width of the axes and draw a subset of
        their contents accordingly

        ACCEPTS: [True | False]
        """
        self._lod = on
        self.pchanged()

    def set_visible(self, b):
        """
        Set the artist's visiblity.

        ACCEPTS: [True | False]
        """
        self._visible = b
        self.pchanged()

    def set_animated(self, b):
        """
        Set the artist's animation state.

        ACCEPTS: [True | False]
        """
        self._animated = b
        self.pchanged()

    def update(self, props):
        """
        Update the properties of this :class:`Artist` from the
        dictionary *prop*.
        """
        store = self.eventson
        self.eventson = False
        changed = False

        for k, v in props.iteritems():
            func = getattr(self, 'set_' + k, None)
            if func is None or not callable(func):
                raise AttributeError('Unknown property %s' % k)
            func(v)
            changed = True
        self.eventson = store
        if changed:
            self.pchanged()

    def get_label(self):
        """
        Get the label used for this artist in the legend.
        """
        return self._label

    def set_label(self, s):
        """
        Set the label to *s* for auto legend.

        ACCEPTS: string or anything printable with '%s' conversion.
        """
        if s is not None:
            self._label = '%s' % (s, )
        else:
            self._label = None
        self.pchanged()

    def get_zorder(self):
        """
        Return the :class:`Artist`'s zorder.
        """
        return self.zorder

    def set_zorder(self, level):
        """
        Set the zorder for the artist.  Artists with lower zorder
        values are drawn first.

        ACCEPTS: any number
        """
        self.zorder = level
        self.pchanged()

    def update_from(self, other):
        'Copy properties from *other* to *self*.'
        self._transform = other._transform
        self._transformSet = other._transformSet
        self._visible = other._visible
        self._alpha = other._alpha
        self.clipbox = other.clipbox
        self._clipon = other._clipon
        self._clippath = other._clippath
        self._lod = other._lod
        self._label = other._label
        self._sketch = other._sketch
        self._path_effects = other._path_effects
        self.pchanged()

    def properties(self):
        """
        return a dictionary mapping property name -> value for all Artist props
        """
        return ArtistInspector(self).properties()

    def set(self, **kwargs):
        """
        A tkstyle set command, pass *kwargs* to set properties
        """
        ret = []
        for k, v in kwargs.iteritems():
            k = k.lower()
            funcName = "set_%s" % k
            func = getattr(self, funcName)
            ret.extend([func(v)])
        return ret

    def findobj(self, match=None, include_self=True):
        """
        Find artist objects.

        Recursively find all :class:`~matplotlib.artist.Artist` instances
        contained in self.

        *match* can be

          - None: return all objects contained in artist.

          - function with signature ``boolean = match(artist)``
            used to filter matches

          - class instance: e.g., Line2D.  Only return artists of class type.

        If *include_self* is True (default), include self in the list to be
        checked for a match.

        """
        if match is None:  # always return True

            def matchfunc(x):
                return True
        elif cbook.issubclass_safe(match, Artist):

            def matchfunc(x):
                return isinstance(x, match)
        elif callable(match):
            matchfunc = match
        else:
            raise ValueError('match must be None, a matplotlib.artist.Artist '
                             'subclass, or a callable')

        artists = []

        for c in self.get_children():
            if matchfunc(c):
                artists.append(c)
            artists.extend([
                thisc for thisc in c.findobj(matchfunc, include_self=False)
                if matchfunc(thisc)
            ])

        if include_self and matchfunc(self):
            artists.append(self)
        return artists
Exemple #13
0
 def get_transform(self):
     'return the Transformation instance used by this artist'
     if self._transform is None:
         self._transform = IdentityTransform()
     return self._transform