def test_augment(img, mask=None, model='scale'):
    if model == 'scale':
        return DualCompose([
            Scale(size=128),
            ImageOnly(
                Normalize(mean=(0.485, 0.456, 0.406),
                          std=(0.229, 0.224, 0.225)))
        ])(img, mask=None)
    else:
        return DualCompose([
            Centerpad(size=(128, 128)),
            ImageOnly(
                Normalize(mean=(0.485, 0.456, 0.406),
                          std=(0.229, 0.224, 0.225)))
        ])(img, mask=None)
def train_augment(img,mask,prob=0.5):
    return DualCompose([HorizontalFlip(prob=0.5),ShiftScale(limit=4,prob=0.5),
                        OneOf([#ImageOnly(CLAHE(clipLimit=2.0, tileGridSize=(8, 8))),
                               ImageOnly(Brightness_shift(limit=0.1)),
                               ImageOnly(do_Gamma(limit=0.08)),                              
                               ImageOnly(Brightness_multiply(limit=0.08)),
                               ],prob=0.5),
                        ImageOnly(Median_blur( ksize=3, prob=.15)),
                        Scale(size=pad),
                        #Centerpad(size=(pad,pad)),
                        ImageOnly(Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)))
                        #OneOf([Scale(size=128),Randompadding(size=(128,128))],prob=1),    
                        
                        #RandomErasing(probability = 0.22, sl = 0.02, sh = 0.2, r1 = 0.2, mean=[0.4914, 0.4822, 0.4465])
                        ])(img,mask)
Exemple #3
0
from torch.utils.data import DataLoader
from torch.nn import functional as F
# from prepare_data import (original_height,
#                           original_width,
#                           h_start, w_start
#                           )
# from crop_utils import join_mask
# import crowdai

from validation import convert_bin_coco
from transforms import (ImageOnly, Normalize, RandomCrop, DualCompose, Rescale)

img_transform = DualCompose([
    # RandomCrop([128, 128]),
    # Rescale([256, 256]),
    ImageOnly(Normalize(mean=(0), std=(1)))
])

PAD = (13, 13, 14, 14)


def get_model(model_path, model_type='unet11', problem_type='parts'):
    """

    :param model_path:
    :param model_type: 'UNet', 'UNet16', 'UNet11', 'LinkNet34'
    :param problem_type: 'binary', 'parts', 'instruments'
    :return:
    """
    num_classes = 1
Exemple #4
0
def main():
    parser = argparse.ArgumentParser()
    arg = parser.add_argument
    arg('--jaccard-weight', default=0.3, type=float)
    arg('--device-ids',
        type=str,
        default='0',
        help='For example 0,1 to run on two GPUs')
    arg('--fold', type=int, help='fold', default=0)
    arg('--root', default='runs/debug', help='checkpoint root')
    arg('--batch-size', type=int, default=1)
    arg('--limit', type=int, default=10000, help='number of images in epoch')
    arg('--n-epochs', type=int, default=100)
    arg('--lr', type=float, default=0.0001)
    arg('--workers', type=int, default=12)
    arg('--model',
        type=str,
        default='UNet',
        choices=['UNet', 'UNet11', 'UNet16', 'AlbuNet34'])

    args = parser.parse_args()

    root = Path(args.root)
    root.mkdir(exist_ok=True, parents=True)

    num_classes = 1
    if args.model == 'UNet':
        model = UNet(num_classes=num_classes)
    elif args.model == 'UNet11':
        model = UNet11(num_classes=num_classes, pretrained=True)
    elif args.model == 'UNet16':
        model = UNet16(num_classes=num_classes, pretrained=True)
    elif args.model == 'LinkNet34':
        model = LinkNet34(num_classes=num_classes, pretrained=True)
    elif args.model == 'AlbuNet':
        model = AlbuNet34(num_classes=num_classes, pretrained=True)
    else:
        model = UNet(num_classes=num_classes, input_channels=3)

    if torch.cuda.is_available():
        if args.device_ids:
            device_ids = list(map(int, args.device_ids.split(',')))
        else:
            device_ids = None
        model = nn.DataParallel(model, device_ids=device_ids).cuda()

    loss = LossBinary(jaccard_weight=args.jaccard_weight)

    cudnn.benchmark = True

    def make_loader(file_names, shuffle=False, transform=None, limit=None):
        return DataLoader(dataset=AngyodysplasiaDataset(file_names,
                                                        transform=transform,
                                                        limit=limit),
                          shuffle=shuffle,
                          num_workers=args.workers,
                          batch_size=args.batch_size,
                          pin_memory=torch.cuda.is_available())

    train_file_names, val_file_names = get_split(args.fold)

    print('num train = {}, num_val = {}'.format(len(train_file_names),
                                                len(val_file_names)))

    train_transform = DualCompose([
        SquarePaddingTraining(),
        CenterCrop([574, 574]),
        HorizontalFlip(),
        VerticalFlip(),
        Rotate(),
        ImageOnly(RandomHueSaturationValue()),
        ImageOnly(Normalize())
    ])

    val_transform = DualCompose([
        SquarePaddingTraining(),
        CenterCrop([574, 574]),
        ImageOnly(Normalize())
    ])

    train_loader = make_loader(train_file_names,
                               shuffle=True,
                               transform=train_transform,
                               limit=args.limit)
    valid_loader = make_loader(val_file_names, transform=val_transform)

    root.joinpath('params.json').write_text(
        json.dumps(vars(args), indent=True, sort_keys=True))

    utils.train(init_optimizer=lambda lr: Adam(model.parameters(), lr=lr),
                args=args,
                model=model,
                criterion=loss,
                train_loader=train_loader,
                valid_loader=valid_loader,
                validation=validation_binary,
                fold=args.fold)
#                           h_start, w_start
#                           )
# from crop_utils import join_mask
import crowdai

from validation import convert_bin_coco
from transforms import (ImageOnly,
                        Normalize,
                        RandomCrop,
                        DualCompose,
                        Rescale)

img_transform = DualCompose([
    # RandomCrop([128, 128]),
    Rescale([256, 256]),
    ImageOnly(Normalize())
])


def get_model(model_path, model_type='unet11', problem_type='parts'):
    """

    :param model_path:
    :param model_type: 'UNet', 'UNet16', 'UNet11', 'LinkNet34'
    :param problem_type: 'binary', 'parts', 'instruments'
    :return:
    """
    num_classes = 1

    # if model_type == 'UNet16':
    #     model = UNet16(num_classes=num_classes)
Exemple #6
0
def main():
    parser = argparse.ArgumentParser()
    arg = parser.add_argument
    arg('--jaccard-weight', default=1, type=float)
    arg('--device-ids',
        type=str,
        default='0',
        help='For example 0,1 to run on two GPUs')
    arg('--fold', type=int, help='fold', default=0)
    arg('--root', default='runs/debug', help='checkpoint root')
    arg('--batch-size', type=int, default=1)
    arg('--n-epochs', type=int, default=10)
    arg('--lr', type=float, default=0.0002)
    arg('--workers', type=int, default=10)
    arg('--type',
        type=str,
        default='binary',
        choices=['binary', 'parts', 'instruments'])
    arg('--model',
        type=str,
        default='DLinkNet',
        choices=['UNet', 'UNet11', 'LinkNet34', 'DLinkNet'])

    args = parser.parse_args()

    root = Path(args.root)
    root.mkdir(exist_ok=True, parents=True)

    if args.type == 'parts':
        num_classes = 4
    elif args.type == 'instruments':
        num_classes = 8
    else:
        num_classes = 1

    if args.model == 'UNet':
        model = UNet(num_classes=num_classes)
    elif args.model == 'UNet11':
        model = UNet11(num_classes=num_classes, pretrained='vgg')
    elif args.model == 'UNet16':
        model = UNet16(num_classes=num_classes, pretrained='vgg')
    elif args.model == 'LinkNet34':
        model = LinkNet34(num_classes=num_classes, pretrained=True)
    elif args.model == 'DLinkNet':
        model = D_LinkNet34(num_classes=num_classes, pretrained=True)
    else:
        model = UNet(num_classes=num_classes, input_channels=3)

    if torch.cuda.is_available():
        if args.device_ids:
            device_ids = list(map(int, args.device_ids.split(',')))
        else:
            device_ids = None
        model = nn.DataParallel(model, device_ids=device_ids).cuda()

    if args.type == 'binary':
        # loss = LossBinary(jaccard_weight=args.jaccard_weight)
        loss = LossBCE_DICE()
    else:
        loss = LossMulti(num_classes=num_classes,
                         jaccard_weight=args.jaccard_weight)

    cudnn.benchmark = True

    def make_loader(file_names,
                    shuffle=False,
                    transform=None,
                    problem_type='binary'):
        return DataLoader(dataset=RoboticsDataset(file_names,
                                                  transform=transform,
                                                  problem_type=problem_type),
                          shuffle=shuffle,
                          num_workers=args.workers,
                          batch_size=args.batch_size,
                          pin_memory=torch.cuda.is_available())

    # train_file_names, val_file_names = get_split(args.fold)
    train_file_names, val_file_names = get_train_val_files()

    print('num train = {}, num_val = {}'.format(len(train_file_names),
                                                len(val_file_names)))

    train_transform = DualCompose(
        [HorizontalFlip(),
         VerticalFlip(),
         ImageOnly(Normalize())])

    val_transform = DualCompose([ImageOnly(Normalize())])

    train_loader = make_loader(train_file_names,
                               shuffle=True,
                               transform=train_transform,
                               problem_type=args.type)
    valid_loader = make_loader(val_file_names,
                               transform=val_transform,
                               problem_type=args.type)

    root.joinpath('params.json').write_text(
        json.dumps(vars(args), indent=True, sort_keys=True))

    if args.type == 'binary':
        valid = validation_binary
    else:
        valid = validation_multi

    utils.train(init_optimizer=lambda lr: Adam(model.parameters(), lr=lr),
                args=args,
                model=model,
                criterion=loss,
                train_loader=train_loader,
                valid_loader=valid_loader,
                validation=valid,
                fold=args.fold,
                num_classes=num_classes)
Exemple #7
0
def main():
    parser = argparse.ArgumentParser()
    arg = parser.add_argument
    arg('--jaccard-weight', default=0.3, type=float)
    arg('--device-ids', type=str, default='0', help='For example 0,1 to run on two GPUs')
    arg('--fold', type=int, help='fold', default=0)
    arg('--root', default='runs/debug', help='checkpoint root')
    arg('--batch-size', type=int, default=1)
    arg('--limit', type=int, default=10000, help='number of images in epoch')
    arg('--n-epochs', type=int, default=100)
    arg('--lr', type=float, default=0.001)
    arg('--workers', type=int, default=12)
    arg('--model', type=str, default='UNet', choices=['UNet', 'UNet11', 'LinkNet34', 'UNet16', 'AlbuNet34', 'MDeNet', 'EncDec', 'hourglass', 'MDeNetplus'])

    args = parser.parse_args()
    root = Path(args.root)
    root.mkdir(exist_ok=True, parents=True)

    num_classes = 1
    if args.model == 'UNet':
        model = UNet(num_classes=num_classes)
    elif args.model == 'UNet11':
        model = UNet11(num_classes=num_classes, pretrained=True)
    elif args.model == 'UNet16':
        model = UNet16(num_classes=num_classes, pretrained=True)
    elif args.model == 'MDeNet':
        print('Mine MDeNet..................')
        model = MDeNet(num_classes=num_classes, pretrained=True)
    elif args.model == 'MDeNetplus':
        print('load MDeNetplus..................')
        model = MDeNetplus(num_classes=num_classes, pretrained=True)
    elif args.model == 'EncDec':
        print('Mine EncDec..................')
        model = EncDec(num_classes=num_classes, pretrained=True)
    elif args.model == 'GAN':
        model = GAN(num_classes=num_classes, pretrained=True)
    elif args.model == 'AlbuNet34':
        model = AlbuNet34(num_classes=num_classes, pretrained=False)
    elif args.model == 'hourglass':
        model = hourglass(num_classes=num_classes, pretrained=True) 
    else:
        model = UNet(num_classes=num_classes, input_channels=3)

    if torch.cuda.is_available():
        if args.device_ids:
            device_ids = list(map(int, args.device_ids.split(',')))
        else:
            device_ids = None
        model = nn.DataParallel(model).cuda()   #  nn.DataParallel(model, device_ids=device_ids).cuda()
    
    cudnn.benchmark = True
    
    def make_loader(file_names, shuffle=False, transform=None, limit=None):
        return DataLoader(
            dataset=Polyp(file_names, transform=transform, limit=limit),
            shuffle=shuffle,
            num_workers=args.workers,
            batch_size=args.batch_size,
            pin_memory=torch.cuda.is_available()
        )

    train_file_names, val_file_names = get_split(args.fold)

    print('num train = {}, num_val = {}'.format(len(train_file_names), len(val_file_names)))
    
    train_transform = DualCompose([
        CropCVC612(),
        img_resize(512),
        HorizontalFlip(),
        VerticalFlip(),
        Rotate(),
        Rescale(), 
        Zoomin(),
        ImageOnly(RandomHueSaturationValue()),
        ImageOnly(Normalize())
    ])

    train_loader = make_loader(train_file_names, shuffle=True, transform=train_transform, limit=args.limit)

    root.joinpath('params.json').write_text(
        json.dumps(vars(args), indent=True, sort_keys=True))

    utils.train(
        args=args,
        model=model,
        train_loader=train_loader,
        fold=args.fold
    )
Exemple #8
0
def main():
    parser = argparse.ArgumentParser()

    arg = parser.add_argument
    arg('--jaccard-weight', default=1, type=float)
    arg('--device-ids',
        type=str,
        default='0',
        help='For example 0,1 to run on two GPUs')
    arg('--fold', type=int, help='fold', default=0)
    arg('--root', default='runs/debug', help='checkpoint root')
    arg('--batch-size', type=int, default=8)
    arg('--n-epochs', type=int, default=14)
    arg('--lr', type=float, default=0.000001)
    arg('--workers', type=int, default=8)
    arg('--type',
        type=str,
        default='binary',
        choices=['binary', 'parts', 'instruments'])
    arg('--model',
        type=str,
        default='TernausNet',
        choices=['UNet', 'UNet11', 'LinkNet34', 'TernausNet'])

    args = parser.parse_args()

    root = Path(args.root)
    root.mkdir(exist_ok=True, parents=True)

    if args.type == 'parts':
        num_classes = 3
    elif args.type == 'instruments':
        num_classes = 8
    else:
        num_classes = 1

    if args.model == 'TernausNet':
        model = TernausNet34(num_classes=num_classes)
    else:
        model = TernausNet34(num_classes=num_classes)

    if torch.cuda.is_available():
        if args.device_ids:
            device_ids = list(map(int, args.device_ids.split(',')))
        else:
            device_ids = None
        model = nn.DataParallel(model, device_ids=device_ids).cuda()

    if args.type == 'binary':
        loss = LossBinary(jaccard_weight=args.jaccard_weight)
    else:
        loss = LossMulti(num_classes=num_classes,
                         jaccard_weight=args.jaccard_weight)

    cudnn.benchmark = True

    def make_loader(file_names,
                    shuffle=False,
                    transform=None,
                    mode='train',
                    problem_type='binary'):
        return DataLoader(dataset=MapDataset(file_names,
                                             transform=transform,
                                             problem_type=problem_type,
                                             mode=mode),
                          shuffle=shuffle,
                          num_workers=args.workers,
                          batch_size=args.batch_size,
                          pin_memory=torch.cuda.is_available())

    # labels = pd.read_csv('data/stage1_train_labels.csv')
    # labels = os.listdir('data/stage1_train_')
    # train_file_names, val_file_names = train_test_split(labels, test_size=0.2, random_state=42)

    # print('num train = {}, num_val = {}'.format(len(train_file_names), len(val_file_names)))

    # train_transform = DualCompose([
    #     HorizontalFlip(),
    #     VerticalFlip(),
    #     RandomCrop([256, 256]),
    #     RandomRotate90(),
    #     ShiftScaleRotate(),
    #     ImageOnly(RandomHueSaturationValue()),
    #     ImageOnly(RandomBrightness()),
    #     ImageOnly(RandomContrast()),
    #     ImageOnly(Normalize())
    # ])
    train_transform = DualCompose([
        OneOrOther(*(OneOf([
            Distort1(distort_limit=0.05, shift_limit=0.05),
            Distort2(num_steps=2, distort_limit=0.05)
        ]),
                     ShiftScaleRotate(shift_limit=0.0625,
                                      scale_limit=0.10,
                                      rotate_limit=45)),
                   prob=0.5),
        RandomRotate90(),
        RandomCrop([256, 256]),
        RandomFlip(prob=0.5),
        Transpose(prob=0.5),
        ImageOnly(RandomContrast(limit=0.2, prob=0.5)),
        ImageOnly(RandomFilter(limit=0.5, prob=0.2)),
        ImageOnly(RandomHueSaturationValue(prob=0.2)),
        ImageOnly(RandomBrightness()),
        ImageOnly(Normalize())
    ])

    val_transform = DualCompose([
        # RandomCrop([256, 256]),
        Rescale([256, 256]),
        ImageOnly(Normalize())
    ])

    train_loader = make_loader(TRAIN_ANNOTATIONS_PATH,
                               shuffle=True,
                               transform=train_transform,
                               problem_type=args.type)
    valid_loader = make_loader(VAL_ANNOTATIONS_PATH,
                               transform=val_transform,
                               mode='valid',
                               problem_type=args.type)

    root.joinpath('params.json').write_text(
        json.dumps(vars(args), indent=True, sort_keys=True))

    if args.type == 'binary':
        valid = validation_binary
    else:
        valid = validation_multi

    utils.train(init_optimizer=lambda lr: Adam(model.parameters(), lr=lr),
                args=args,
                model=model,
                criterion=loss,
                train_loader=train_loader,
                valid_loader=valid_loader,
                validation=valid,
                fold=args.fold,
                num_classes=num_classes)
from prepare_train_val import get_split
from dataset import Polyp
import cv2
from models import UNet, UNet11, UNet16, AlbuNet34, MDeNet, EncDec, hourglass, MDeNetplus
import torch
from pathlib import Path
from tqdm import tqdm
import numpy as np
import utils
# import prepare_data
from torch.utils.data import DataLoader
from torch.nn import functional as F

from transforms import (ImageOnly, Normalize, CenterCrop, DualCompose)

img_transform = DualCompose([CenterCrop(512), ImageOnly(Normalize())])


def get_model(model_path, model_type):
    """

    :param model_path:
    :param model_type: 'UNet', 'UNet11', 'UNet16', 'AlbuNet34'
    :return:
    """

    num_classes = 1

    if model_type == 'UNet11':
        model = UNet11(num_classes=num_classes)
    elif model_type == 'UNet16':
Exemple #10
0
def main():
    parser = argparse.ArgumentParser()
    arg = parser.add_argument
    arg('--jaccard-weight', type=float, default=1)
    arg('--root', type=str, default='runs/debug', help='checkpoint root')
    arg('--image-path', type=str, default='data', help='image path')
    arg('--batch-size', type=int, default=2)
    arg('--n-epochs', type=int, default=100)
    arg('--optimizer', type=str, default='Adam', help='Adam or SGD')
    arg('--lr', type=float, default=0.001)
    arg('--workers', type=int, default=10)
    arg('--model',
        type=str,
        default='UNet16',
        choices=[
            'UNet', 'UNet11', 'UNet16', 'LinkNet34', 'FCDenseNet57',
            'FCDenseNet67', 'FCDenseNet103'
        ])
    arg('--model-weight', type=str, default=None)
    arg('--resume-path', type=str, default=None)
    arg('--attribute',
        type=str,
        default='all',
        choices=[
            'pigment_network', 'negative_network', 'streaks',
            'milia_like_cyst', 'globules', 'all'
        ])
    args = parser.parse_args()

    ## folder for checkpoint
    root = Path(args.root)
    root.mkdir(exist_ok=True, parents=True)

    image_path = args.image_path

    #print(args)
    if args.attribute == 'all':
        num_classes = 5
    else:
        num_classes = 1
    args.num_classes = num_classes
    ### save initial parameters
    print('--' * 10)
    print(args)
    print('--' * 10)
    root.joinpath('params.json').write_text(
        json.dumps(vars(args), indent=True, sort_keys=True))

    ## load pretrained model
    if args.model == 'UNet':
        model = UNet(num_classes=num_classes)
    elif args.model == 'UNet11':
        model = UNet11(num_classes=num_classes, pretrained='vgg')
    elif args.model == 'UNet16':
        model = UNet16(num_classes=num_classes, pretrained='vgg')
    elif args.model == 'LinkNet34':
        model = LinkNet34(num_classes=num_classes, pretrained=True)
    elif args.model == 'FCDenseNet103':
        model = FCDenseNet103(num_classes=num_classes)
    else:
        model = UNet(num_classes=num_classes, input_channels=3)

    ## multiple GPUs
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    if torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)
    model.to(device)

    ## load pretrained model
    if args.model_weight is not None:
        state = torch.load(args.model_weight)
        #epoch = state['epoch']
        #step = state['step']
        model.load_state_dict(state['model'])
        print('--' * 10)
        print('Load pretrained model', args.model_weight)
        #print('Restored model, epoch {}, step {:,}'.format(epoch, step))
        print('--' * 10)
        ## replace the last layer
        ## although the model and pre-trained weight have differernt size (the last layer is different)
        ## pytorch can still load the weight
        ## I found that the weight for one layer just duplicated for all layers
        ## therefore, the following code is not necessary
        # if args.attribute == 'all':
        #     model = list(model.children())[0]
        #     num_filters = 32
        #     model.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
        #     print('--' * 10)
        #     print('Load pretrained model and replace the last layer', args.model_weight, num_classes)
        #     print('--' * 10)
        #     if torch.cuda.device_count() > 1:
        #         model = nn.DataParallel(model)
        #     model.to(device)

    ## model summary
    print_model_summay(model)

    ## define loss
    loss_fn = LossBinary(jaccard_weight=args.jaccard_weight)

    ## It enables benchmark mode in cudnn.
    ## benchmark mode is good whenever your input sizes for your network do not vary. This way, cudnn will look for the
    ## optimal set of algorithms for that particular configuration (which takes some time). This usually leads to faster runtime.
    ## But if your input sizes changes at each iteration, then cudnn will benchmark every time a new size appears,
    ## possibly leading to worse runtime performances.
    cudnn.benchmark = True

    ## get train_test_id
    train_test_id = get_split()

    ## train vs. val
    print('--' * 10)
    print('num train = {}, num_val = {}'.format(
        (train_test_id['Split'] == 'train').sum(),
        (train_test_id['Split'] != 'train').sum()))
    print('--' * 10)

    train_transform = DualCompose(
        [HorizontalFlip(),
         VerticalFlip(),
         ImageOnly(Normalize())])

    val_transform = DualCompose([ImageOnly(Normalize())])

    ## define data loader
    train_loader = make_loader(train_test_id,
                               image_path,
                               args,
                               train=True,
                               shuffle=True,
                               transform=train_transform)
    valid_loader = make_loader(train_test_id,
                               image_path,
                               args,
                               train=False,
                               shuffle=True,
                               transform=val_transform)

    if True:
        print('--' * 10)
        print('check data')
        train_image, train_mask, train_mask_ind = next(iter(train_loader))
        print('train_image.shape', train_image.shape)
        print('train_mask.shape', train_mask.shape)
        print('train_mask_ind.shape', train_mask_ind.shape)
        print('train_image.min', train_image.min().item())
        print('train_image.max', train_image.max().item())
        print('train_mask.min', train_mask.min().item())
        print('train_mask.max', train_mask.max().item())
        print('train_mask_ind.min', train_mask_ind.min().item())
        print('train_mask_ind.max', train_mask_ind.max().item())
        print('--' * 10)

    valid_fn = validation_binary

    ###########
    ## optimizer
    if args.optimizer == 'Adam':
        optimizer = Adam(model.parameters(), lr=args.lr)
    elif args.optimizer == 'SGD':
        optimizer = SGD(model.parameters(), lr=args.lr, momentum=0.9)

    ## loss
    criterion = loss_fn
    ## change LR
    scheduler = ReduceLROnPlateau(optimizer,
                                  'min',
                                  factor=0.8,
                                  patience=5,
                                  verbose=True)

    ##########
    ## load previous model status
    previous_valid_loss = 10
    model_path = root / 'model.pt'
    if args.resume_path is not None and model_path.exists():
        state = torch.load(str(model_path))
        epoch = state['epoch']
        step = state['step']
        model.load_state_dict(state['model'])
        epoch = 1
        step = 0
        try:
            previous_valid_loss = state['valid_loss']
        except:
            previous_valid_loss = 10
        print('--' * 10)
        print('Restored previous model, epoch {}, step {:,}'.format(
            epoch, step))
        print('--' * 10)
    else:
        epoch = 1
        step = 0

    #########
    ## start training
    log = root.joinpath('train.log').open('at', encoding='utf8')
    writer = SummaryWriter()
    meter = AllInOneMeter()
    #if previous_valid_loss = 10000
    print('Start training')
    print_model_summay(model)
    previous_valid_jaccard = 0
    for epoch in range(epoch, args.n_epochs + 1):
        model.train()
        random.seed()
        #jaccard = []
        start_time = time.time()
        meter.reset()
        w1 = 1.0
        w2 = 0.5
        w3 = 0.5
        try:
            train_loss = 0
            valid_loss = 0
            # if epoch == 1:
            #     freeze_layer_names = get_freeze_layer_names(part='encoder')
            #     set_freeze_layers(model, freeze_layer_names=freeze_layer_names)
            #     #set_train_layers(model, train_layer_names=['module.final.weight','module.final.bias'])
            #     print_model_summay(model)
            # elif epoch == 5:
            #     w1 = 1.0
            #     w2 = 0.0
            #     w3 = 0.5
            #     freeze_layer_names = get_freeze_layer_names(part='encoder')
            #     set_freeze_layers(model, freeze_layer_names=freeze_layer_names)
            #     # set_train_layers(model, train_layer_names=['module.final.weight','module.final.bias'])
            #     print_model_summay(model)
            #elif epoch == 3:
            #     set_train_layers(model, train_layer_names=['module.dec5.block.0.conv.weight','module.dec5.block.0.conv.bias',
            #                                                'module.dec5.block.1.weight','module.dec5.block.1.bias',
            #                                                'module.dec4.block.0.conv.weight','module.dec4.block.0.conv.bias',
            #                                                'module.dec4.block.1.weight','module.dec4.block.1.bias',
            #                                                'module.dec3.block.0.conv.weight','module.dec3.block.0.conv.bias',
            #                                                'module.dec3.block.1.weight','module.dec3.block.1.bias',
            #                                                'module.dec2.block.0.conv.weight','module.dec2.block.0.conv.bias',
            #                                                'module.dec2.block.1.weight','module.dec2.block.1.bias',
            #                                                'module.dec1.conv.weight','module.dec1.conv.bias',
            #                                                'module.final.weight','module.final.bias'])
            #     print_model_summa zvgf    t5y(model)
            # elif epoch == 50:
            #     set_freeze_layers(model, freeze_layer_names=None)
            #     print_model_summay(model)
            for i, (train_image, train_mask,
                    train_mask_ind) in enumerate(train_loader):
                # inputs, targets = variable(inputs), variable(targets)

                train_image = train_image.permute(0, 3, 1, 2)
                train_mask = train_mask.permute(0, 3, 1, 2)
                train_image = train_image.to(device)
                train_mask = train_mask.to(device).type(torch.cuda.FloatTensor)
                train_mask_ind = train_mask_ind.to(device).type(
                    torch.cuda.FloatTensor)
                # if args.problem_type == 'binary':
                #     train_mask = train_mask.to(device).type(torch.cuda.FloatTensor)
                # else:
                #     #train_mask = train_mask.to(device).type(torch.cuda.LongTensor)
                #     train_mask = train_mask.to(device).type(torch.cuda.FloatTensor)

                outputs, outputs_mask_ind1, outputs_mask_ind2 = model(
                    train_image)
                #print(outputs.size())
                #print(outputs_mask_ind1.size())
                #print(outputs_mask_ind2.size())
                ### note that the last layer in the model is defined differently
                # if args.problem_type == 'binary':
                #     train_prob = F.sigmoid(outputs)
                #     loss = criterion(outputs, train_mask)
                # else:
                #     #train_prob = outputs
                #     train_prob = F.sigmoid(outputs)
                #     loss = torch.tensor(0).type(train_mask.type())
                #     for feat_inx in range(train_mask.shape[1]):
                #         loss += criterion(outputs, train_mask)
                train_prob = F.sigmoid(outputs)
                train_mask_ind_prob1 = F.sigmoid(outputs_mask_ind1)
                train_mask_ind_prob2 = F.sigmoid(outputs_mask_ind2)
                loss1 = criterion(outputs, train_mask)
                #loss1 = F.binary_cross_entropy_with_logits(outputs, train_mask)
                #loss2 = nn.BCEWithLogitsLoss()(outputs_mask_ind1, train_mask_ind)
                #print(train_mask_ind.size())
                #weight = torch.ones_like(train_mask_ind)
                #weight[:, 0] = weight[:, 0] * 1
                #weight[:, 1] = weight[:, 1] * 14
                #weight[:, 2] = weight[:, 2] * 14
                #weight[:, 3] = weight[:, 3] * 4
                #weight[:, 4] = weight[:, 4] * 4
                #weight = weight * train_mask_ind + 1
                #weight = weight.to(device).type(torch.cuda.FloatTensor)
                loss2 = F.binary_cross_entropy_with_logits(
                    outputs_mask_ind1, train_mask_ind)
                loss3 = F.binary_cross_entropy_with_logits(
                    outputs_mask_ind2, train_mask_ind)
                #loss3 = criterion(outputs_mask_ind2, train_mask_ind)
                loss = loss1 * w1 + loss2 * w2 + loss3 * w3
                #print(loss1.item(), loss2.item(), loss.item())
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                step += 1
                #jaccard += [get_jaccard(train_mask, (train_prob > 0).float()).item()]
                meter.add(train_prob, train_mask, train_mask_ind_prob1,
                          train_mask_ind_prob2, train_mask_ind, loss1.item(),
                          loss2.item(), loss3.item(), loss.item())
                # print(train_mask.data.shape)
                # print(train_mask.data.sum(dim=-2).shape)
                # print(train_mask.data.sum(dim=-2).sum(dim=-1).shape)
                # print(train_mask.data.sum(dim=-2).sum(dim=-1).sum(dim=0).shape)
                # intersection = train_mask.data.sum(dim=-2).sum(dim=-1)
                # print(intersection.shape)
                # print(intersection.dtype)
                # print(train_mask.data.shape[0])
                #torch.zeros([2, 4], dtype=torch.float32)
            #########################
            ## at the end of each epoch, evualte the metrics
            epoch_time = time.time() - start_time
            train_metrics = meter.value()
            train_metrics['epoch_time'] = epoch_time
            train_metrics['image'] = train_image.data
            train_metrics['mask'] = train_mask.data
            train_metrics['prob'] = train_prob.data

            #train_jaccard = np.mean(jaccard)
            #train_auc = str(round(mtr1.value()[0],2))+' '+str(round(mtr2.value()[0],2))+' '+str(round(mtr3.value()[0],2))+' '+str(round(mtr4.value()[0],2))+' '+str(round(mtr5.value()[0],2))
            valid_metrics = valid_fn(model, criterion, valid_loader, device,
                                     num_classes)
            ##############
            ## write events
            write_event(log,
                        step,
                        epoch=epoch,
                        train_metrics=train_metrics,
                        valid_metrics=valid_metrics)
            #save_weights(model, model_path, epoch + 1, step)
            #########################
            ## tensorboard
            write_tensorboard(writer,
                              model,
                              epoch,
                              train_metrics=train_metrics,
                              valid_metrics=valid_metrics)
            #########################
            ## save the best model
            valid_loss = valid_metrics['loss1']
            valid_jaccard = valid_metrics['jaccard']
            if valid_loss < previous_valid_loss:
                save_weights(model, model_path, epoch + 1, step, train_metrics,
                             valid_metrics)
                previous_valid_loss = valid_loss
                print('Save best model by loss')
            if valid_jaccard > previous_valid_jaccard:
                save_weights(model, model_path, epoch + 1, step, train_metrics,
                             valid_metrics)
                previous_valid_jaccard = valid_jaccard
                print('Save best model by jaccard')
            #########################
            ## change learning rate
            scheduler.step(valid_metrics['loss1'])

        except KeyboardInterrupt:
            # print('--' * 10)
            # print('Ctrl+C, saving snapshot')
            # save_weights(model, model_path, epoch, step)
            # print('done.')
            # print('--' * 10)
            writer.close()
            #return
    writer.close()
def valid_augment(img,mask):
    return DualCompose([Scale(size=pad),ImageOnly(Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)))])(img, mask)
def main():
    parser = argparse.ArgumentParser()
    arg = parser.add_argument
    arg('--jaccard-weight', default=0.3, type=float)
    arg('--device-ids',
        type=str,
        default='0',
        help='For example 0,1 to run on two GPUs')
    arg('--fold', type=int, help='fold', default=0)
    arg('--root', default='runs/debug', help='checkpoint root')
    arg('--batch-size', type=int, default=1)
    arg('--limit', type=int, default=10000, help='number of images in epoch')
    arg('--n-epochs', type=int, default=100)
    arg('--lr', type=float, default=0.0001)
    arg('--workers', type=int, default=12)
    arg("--b1",
        type=float,
        default=0.5,
        help="adam: decay of first order momentum of gradient")
    arg("--b2",
        type=float,
        default=0.999,
        help="adam: decay of first order momentum of gradient")

    args = parser.parse_args()
    root = Path(args.root)
    root.mkdir(exist_ok=True, parents=True)

    # Loss functions
    criterion_GAN = GAN_loss(gan_weight=1)  #torch.nn.MSELoss()
    criterion_pixelwise = torch.nn.L1Loss()
    criterion_discrim = Discrim_loss(dircrim_weight=1)

    # Loss weight of L1 pixel-wise loss between translated image and real image
    lambda_pixel = 100

    # Initialize generator and discriminator
    model = AlbuNet34(num_classes=1, pretrained=True)
    discrim_model = discriminator()

    if torch.cuda.is_available():
        if args.device_ids:
            device_ids = list(map(int, args.device_ids.split(',')))
        else:
            device_ids = None
        model = nn.DataParallel(model, device_ids=device_ids).cuda()
        discrim_model = nn.DataParallel(discrim_model,
                                        device_ids=device_ids).cuda()

    # Load pretrained models
    root = Path(args.root)
    model_path = root / 'model_{fold}.pt'.format(fold=args.fold)
    if model_path.exists():
        state = torch.load(str(model_path))
        epoch = state['epoch']
        step = state['step']
        model.load_state_dict(state['model'])
        print('Restored model, epoch {}, step {:,}'.format(epoch, step))
    else:
        epoch = 1
        step = 0

    save = lambda ep: torch.save(
        {
            'model': model.state_dict(),
            'epoch': ep,
            'step': step,
        }, str(model_path))

    # Optimizers
    optimizer_G = Adam(model.parameters(),
                       lr=args.lr,
                       betas=(args.b1, args.b2))
    optimizer_D = Adam(discrim_model.parameters(),
                       lr=args.lr,
                       betas=(args.b1, args.b2))

    # Configure dataloaders
    def make_loader(file_names, shuffle=False, transform=None, limit=None):
        return DataLoader(dataset=Polyp(file_names,
                                        transform=transform,
                                        limit=limit),
                          shuffle=shuffle,
                          num_workers=args.workers,
                          batch_size=args.batch_size,
                          pin_memory=torch.cuda.is_available())

    train_file_names, val_file_names = get_split(args.fold)

    print('num train = {}, num_val = {}'.format(len(train_file_names),
                                                len(val_file_names)))

    train_transform = DualCompose([
        CropCVC612(),
        img_resize(512),
        HorizontalFlip(),
        VerticalFlip(),
        Rotate(),
        Rescale(),
        Zoomin(),
        ImageOnly(RandomHueSaturationValue()),
        ImageOnly(Normalize())
    ])

    train_loader = make_loader(train_file_names,
                               shuffle=True,
                               transform=train_transform,
                               limit=args.limit)

    root.joinpath('params.json').write_text(
        json.dumps(vars(args), indent=True, sort_keys=True))

    report_each = 10
    log = root.joinpath('train_{fold}.log'.format(fold=args.fold)).open(
        'at', encoding='utf8')

    for epoch in range(epoch, args.n_epochs + 1):
        model.train()
        discrim_model.train()
        random.seed()
        tq = tqdm.tqdm(total=(len(train_loader) * args.batch_size))
        tq.set_description('Epoch {}, lr {}'.format(epoch, args.lr))
        losses = []
        tl = train_loader
        try:
            mean_loss = 0
            for i, (inputs, targets) in enumerate(tl):
                # Model inputs
                inputs, targets = variable(inputs), variable(targets)

                # ------------------
                #  Train Generators
                # ------------------
                optimizer_G.zero_grad()
                # Generate output
                outputs = model(inputs)
                # fake loss
                predict_fake = discrim_model(inputs, outputs)

                # Pixel-wise loss
                loss_pixel = criterion_pixelwise(outputs, targets)
                # Generator loss
                loss_GAN = criterion_GAN(predict_fake)
                # Total loss of GAN
                loss_G = loss_GAN + lambda_pixel * loss_pixel

                loss_G.backward()
                optimizer_G.step()

                # ---------------------
                #  Train Discriminator
                # ---------------------
                optimizer_D.zero_grad()
                # Real loss
                predict_real = discrim_model(inputs, targets)
                predict_fake = discrim_model(inputs, outputs.detach())

                # Discriminator loss
                loss_D = criterion_discrim(predict_real, predict_fake)
                loss_D.backward()
                optimizer_D.step()

                step += 1
                batch_size = inputs.size(0)
                tq.update(batch_size)
                losses.append(float(loss_G.data))
                mean_loss = np.mean(losses[-report_each:])
                tq.set_postfix(loss='{:.5f}'.format(mean_loss))
                if i and i % report_each == 0:
                    write_event(log, step, loss=mean_loss)
            write_event(log, step, loss=mean_loss)
            tq.close()
            save(epoch + 1)

        except KeyboardInterrupt:
            tq.close()
            print('Ctrl+C, saving snapshot')
            save(epoch)
            print('done.')
            return
Exemple #13
0
from dataset import RoboticsDataset
import cv2
from models import UNet16, LinkNet34, UNet11, UNet
import torch
from pathlib import Path
from tqdm import tqdm
import numpy as np
import utils
import prepare_data
from torch.utils.data import DataLoader
from torch.nn import functional as F
from prepare_data import (original_height, original_width, h_start, w_start)

from transforms import (ImageOnly, Normalize, DualCompose)

img_transform = DualCompose([ImageOnly(Normalize())])


def get_model(model_path, model_type='unet11', problem_type='binary'):
    """
    :param model_path:
    :param model_type: 'UNet', 'UNet16', 'UNet11', 'LinkNet34'
    :param problem_type: 'binary', 'parts', 'instruments'
    :return:
    """
    if problem_type == 'binary':
        num_classes = 1
    elif problem_type == 'parts':
        num_classes = 4
    elif problem_type == 'instruments':
        num_classes = 8
    data_root = root / "miccai_challenge_2018_training_data"
    json_file_name = str(data_root / "labels.json")
    train_file_names = get_color_file_names(fold=fold, root=data_root)

    lr = 1.0e-4
    n_epochs = 200
    # scale = 4
    img_width = 1280
    img_height = 1024
    factor = 0.05
    train_transform = DualCompose([
        # Resize(w=img_width, h=img_height),
        HorizontalFlip(),
        VerticalFlip(),
        ImageOnly(
            [RandomBrightnessDual(limit=0.3),
             RandomContrastDual(limit=0.3)]),
        ImageOnly([NormalizeImage()])
    ])
    # RandomSaturation(limit=0.3)
    valid_transform = DualCompose([
        # Resize(w=img_width, h=img_height),
        ImageOnly([NormalizeImage()])
    ])

    train_dataset = Challenge2018TemporalOpticalFlowDataset(
        image_file_names=train_file_names,
        to_augment=True,
        transform=train_transform,
        img_width=img_width,
        img_height=img_height,