Exemple #1
0
 def build_amr(self, tokens, actions, labels, labelsA, predicates):
     apply_actions = []
     for act, label, labelA, predicate in zip(actions, labels, labelsA,
                                              predicates):
         # print(act, label, labelA, predicate)
         if act.startswith('PR'):
             apply_actions.append(act + f'({predicate})')
         elif act.startswith('RA') or act.startswith(
                 'LA') and not act.endswith('(root)'):
             apply_actions.append(act + f'({label})')
         elif act.startswith('AD'):
             apply_actions.append(act + f'({labelA})')
         else:
             apply_actions.append(act)
     toks = [tok for tok in tokens if tok != "<eof>"]
     tr = AMRStateMachine(toks,
                          verbose=False,
                          spacy_lemmatizer=self.lemmatizer)
     tr.applyActions(apply_actions)
     return tr.amr
def eval_parser(exp_name, model, args, dev_sentences, h5py_test, epoch_idx,
                smatch_file, save_model, param_groups):

    # save also current learning rate
    learning_rate = ",".join([str(x['lr']) for x in param_groups])

    model.eval()

    # evaluate on dev
    print_log('eval', f'Evaluating on: {args.amr_dev_data}')
    if save_model:
        predicted_amr_file = f'{save_model}/{exp_name}_amrs.epoch{epoch_idx}.dev.txt'
    else:
        predicted_amr_file = f'{exp_name}_amrs.epoch{epoch_idx}.dev.txt'
    with open(predicted_amr_file, 'w+') as f:
        f.write('')
    print_log('eval', f'Writing amr graphs to: {predicted_amr_file}')
    if save_model:
        actions_file = f'{save_model}/{exp_name}_actions.epoch{epoch_idx}.dev.txt'
    else:
        actions_file = f'{exp_name}_actions.epoch{epoch_idx}.dev.txt'
    if args.write_actions:
        print_log('eval', f'Writing actions to: {actions_file}')
        with open(actions_file, 'w+') as f:
            f.write('')

    sent_idx = 0
    dev_hash = 0
    for tokens in tqdm(dev_sentences):

        sent_rep = utils.vectorize_words(model,
                                         tokens,
                                         training=False,
                                         gpu=args.gpu)
        dev_b_emb = get_bert_embeddings(h5py_test, sent_idx,
                                        tokens) if not args.no_bert else None

        _, actions, labels, labelsA, predicates = model.forward_single(
            sent_rep, mode='predict', tokens=tokens, bert_embedding=dev_b_emb)

        # write amr graphs
        apply_actions = []
        for act, label, labelA, predicate in zip(actions, labels, labelsA,
                                                 predicates):
            # print(act, label, labelA, predicate)
            if act.startswith('PR'):
                apply_actions.append(act + f'({predicate})')
            elif act.startswith('RA') or act.startswith(
                    'LA') and not act.endswith('(root)'):
                apply_actions.append(act + f'({label})')
            elif act.startswith('AD'):
                apply_actions.append(act + f'({labelA})')
            else:
                apply_actions.append(act)
        if args.unit_tests:
            dev_hash += sum(model.action2idx[a] for a in actions)
            dev_hash += sum(model.labelsO2idx[l] for l in labels if l)
            dev_hash += sum(model.labelsA2idx[l] for l in labelsA if l)
            dev_hash += sum(model.pred2idx[p] if p in model.pred2idx else 0
                            for p in predicates if p)

        # print('[eval]',apply_actions)
        if args.write_actions:
            with open(actions_file, 'a') as f:
                f.write('\t'.join(tokens) + '\n')
                f.write('\t'.join(apply_actions) + '\n\n')
        tr = AMRStateMachine(tokens, verbose=False)
        tr.applyActions(apply_actions)
        with open(predicted_amr_file, 'a') as f:
            f.write(tr.amr.toJAMRString())
        sent_idx += 1
    # run smatch
    print_log('eval', f'Computing SMATCH')
    smatch_score = smatch_wrapper(args.amr_dev_data,
                                  predicted_amr_file,
                                  significant=3)
    print_log('eval', f'SMATCH: {smatch_score}')
    timestamp = str(datetime.now()).split('.')[0]

    # store all information in file
    print_log('eval', f'Writing SMATCH and other info to: {smatch_file}')
    with open(smatch_file, 'a') as fid:
        fid.write("\t".join([
            f'epoch {epoch_idx}', f'learning_rate {learning_rate}',
            f'time {timestamp}', f'F-score {smatch_score}\n'
        ]))

    if args.unit_tests:
        test1 = (model.epoch_loss == 3360.1150283813477)
        test2 = (dev_hash == 6038)
        print(
            f'[run tests] epoch_loss==3360.1150283813477 (got {model.epoch_loss}) {"pass" if test1 else "fail"}',
            file=sys.stderr)
        print(
            f'[run tests] dev hash==6038 (got {dev_hash}) {"pass" if test2 else "fail"}',
            file=sys.stderr)
        assert (test1)
        assert (test2)

    return smatch_score