Exemple #1
0
 def get_nearby_transporters(self,max_distance=16093):
     """
     Return a list of the transporters available near payload.
     """
     base_query = Transporter.all().filter('available =',True)
     return Transporter.proximity_fetch(base_query,
         self.current_location,
         max_results=10,
         max_distance=max_distance) #within 10 miles
Exemple #2
0
 def __init__(self, filepath):
     with io.open(filepath, 'r', encoding='utf-8') as f:
         self.raw = json.load(f)
     self.compounds = [
         Compound(x['name'], x['xrefs']) for x in self.raw['compounds']
     ]
     self.remedies = [
         Remedy(x['name'], x['xrefs']) for x in self.raw['remedies']
     ]
     self.enzymes = [
         Enzyme(x['name'], x['xrefs']) for x in self.raw['enzymes']
     ]
     self.transporter = [
         Transporter(x['name'], x['xrefs']) for x in self.raw['transporter']
     ]
     self.drugs = [Drug(x['name'], x['xrefs']) for x in self.raw['drugs']]
     publication = self.raw['publication']
     doi = publication['doi'] if 'doi' in publication else None
     self.publication = Reference(publication['pmid'], doi,
                                  publication['citation'])
else:
    if "x_train" in locals():
        ae.train(AE_STEPS, x_train, x_test, lr=0.003)
    else:
        ae.train_iter(AE_STEPS, train_loader, test_loader, lr=0.003)

# Prepare the Latent Space Model
if not 'x_test' in locals():
    # print ("EVENTUALLY CHANGE THIS BACK AS WELL!!!")
    x_test = np.load("faces.npy")
    # x_test = unload(test_loader)

encodings = ae.encode(x_test)

if MODEL == 'transporter':
    model = Transporter(encodings, DISTR, FOLDER, BATCH_SIZE_GEN)
elif MODEL == 'generator':
    model = Generator(encodings, DISTR, FOLDER, BATCH_SIZE_GEN) # I Could try L2 Loss instead of L1?
else:
    raise NotImplementedError

# Train the Latent Space Model
if GEN_LOAD:
    model.load_weights(MODEL)
else:
    model.train(STEPS, lr=0.001) # I should try adjusting the learning rate?
    #model.train(STEPS//2, lr=0.0003)
    #model.train(STEPS//2, lr=0.0001)

# Display Results
fake_distr = model.generate(batches=1)
Exemple #4
0
 def __init__(self):
     Transporter.__init__(self)
     self._channel = None
Exemple #5
0
# Load the right dataset
if DATASET == 'moons':
    latent, test = make_moons()
elif DATASET == 'two_cluster':
    latent, test = two_cluster()
elif DATASET == 'eight_cluster':
    latent, test = eight_cluster()
elif DATASET == 'circles':
    latent, test = make_circles()
else:
    raise NotImplementedError

# Prepare the Latent Space Model
if MODEL == 'transporter':
    model = Transporter(latent, DISTR, FOLDER, BATCH_SIZE_GEN)
elif MODEL == 'generator':
    model = Generator(latent, DISTR, FOLDER, BATCH_SIZE_GEN)
else:
    raise NotImplementedError

# Train the Latent Space Model
if GEN_LOAD:
    model.load_weights(MODEL)
else:
    model.train(STEPS, lr=0.0001, images=True)

# Evaluate
model.evaluate()

# Display Results
Exemple #6
0
def test_Transporter_images_is_a_text_file():
    trans_obj = Transporter()
    trans_obj.add_images("test_emailer.py")
    # if there are no images, then no Content-ID added to msg_root
    print(trans_obj.msg_root)
    assert 'Content-ID' not in trans_obj.msg_root
Exemple #7
0
def test_Transporter_images_is_a_string_and_is_missing():
    trans_obj = Transporter()
    trans_obj.add_images("missing_image.jpg")
    # if there are no images, then no Content-ID added to msg_root
    assert 'Content-ID' not in trans_obj.msg_root
Exemple #8
0
def test_Transporter_missing_images():
    trans_obj = Transporter()
    trans_obj.add_images(["missing_image.jpg"])
    # if there are no images, then no Content-ID added to msg_root
    assert 'Content-ID' not in trans_obj.msg_root
Exemple #9
0
def test_Transporter_message_text():
    trans_obj = Transporter()
    trans_obj.build_message_text(string_message='this is a message')
    assert trans_obj.string_message == 'this is a message'
Exemple #10
0
def test_Transporter_creation():
    trans_obj = Transporter()
    assert trans_obj is not None