Exemple #1
0
def test_get_model(mocker, raw_model, X, y, needs_proba):
    model = TravaModel(raw_model=raw_model, model_id=model_id)

    assert model.get_model(for_train=True) == raw_model
    assert model.get_model(for_train=False) == raw_model

    y_predict_proba = mocker.Mock()
    if needs_proba:
        raw_model.predict_proba.return_value = y_predict_proba

    y_pred = mocker.Mock()
    raw_model.predict.return_value = y_pred

    model.fit(X=X, y=y)
    model.predict(X=X, y=y)

    model.unload_model()

    train_cached_model = model.get_model(for_train=True)
    test_cached_model = model.get_model(for_train=False)

    assert train_cached_model != raw_model
    assert test_cached_model != raw_model

    assert train_cached_model.predict(X) == y_pred
    if needs_proba:
        assert train_cached_model.predict_proba(X) == y_predict_proba
Exemple #2
0
def test_get_model_unload(mocker, raw_model, for_train):
    trava_model = TravaModel(raw_model=raw_model, model_id=model_id)
    trava_model.unload_model()

    with pytest.raises(ValueError):
        trava_model.get_model(for_train=for_train)

    if for_train:
        y_pred_key = "_y_train_pred"
    else:
        y_pred_key = "_y_test_pred"

    y_pred_mock = mocker.Mock()
    mocker.patch.object(trava_model, y_pred_key, y_pred_mock)

    assert trava_model.get_model(for_train=for_train).predict(X=None) == y_pred_mock
Exemple #3
0
    def __call__(self, trava_model: TravaModel, for_train: bool, X, X_raw, y, **kwargs):
        if self._requires_raw_model and not trava_model.raw_model():
            raise Exception("Cannot perform eval on model {} " "because it was unloaded.".format(trava_model.model_id))

        if self._requires_X_y and (X is None or X_raw is None or y is None):
            raise Exception(
                "Cannot perform eval on model {} "
                "because data is required and was unloaded.".format(trava_model.model_id)
            )

        return self._scorer(
            model=trava_model.get_model(for_train=for_train),
            model_info=trava_model,
            for_train=for_train,
            X=X,
            X_raw=X_raw,
            y=y,
            **kwargs
        )