def test_training_data4(self): from experiment import sample_wins_and_losses from metrics import SemanticsOracleAccuracyMetric from scoring import Model from travel import TravelDomain from geonames import GeoNamesAnnotator domain = TravelDomain() rules = self.rules_travel + self.rules_travel_locations + self.rules_travel_modes + self.rules_travel_triggers + self.rules_request_types + self.rules_optionals grammar = Unit2Grammar(rules=rules, annotators=[GeoNamesAnnotator(live_requests=False)]) model = Model(grammar=grammar) metric = SemanticsOracleAccuracyMetric() # If printing=True, prints a sampling of wins (correct semantics in # first parse) and losses on the dataset. metric_values = sample_wins_and_losses(domain=domain, model=model, metric=metric, seed=31, printing=False)
def travel_demo(): from travel import TravelDomain demo_learning_from_semantics(TravelDomain())
# Extend domain.ops: # Make sure things are working: display_examples(('the one', 'the average of one and four'), grammar=math_grammar, domain=math_domain) # ## Travel domain # Here's an illustration of how parsing and interpretation work in this domain: # In[ ]: from travel import TravelDomain travel_domain = TravelDomain() travel_grammar = travel_domain.grammar() display_examples(("flight from Boston to San Francisco", "directions from New York to Philadelphia", "directions New York to Philadelphia"), grammar=travel_grammar, domain=travel_domain) # For these questions, we'll combine grammars with machine learning. # Here's now to train and evaluate a model using the grammar # that is included in `TravelDomain` along with a basic feature # function. # In[ ]: