def vjpfun(o_logits_grads):
     so_grad = np.take(o_logits_grads[0], sticker, axis=0)
     # TODO(kitaev): this exists to match the forward pass, but I'm not sure
     # if it's actually required.
     buckets_and_t_ = buckets_and_t + jax.lax.convert_element_type(
         o_logits_grads[1][0] > 0, buckets_and_t.dtype)
     _, slogits_grad = jax.lax.sort_key_val(buckets_and_t_,
                                            o_logits_grads[1],
                                            dimension=-1)
     return (so_grad, slogits_grad)
 def unsort_for_output_impl(so, slogits):
     o = np.take(so, undo_sort, axis=0)
     # Sorting is considerably faster than gather, but first we need to get the
     # XLA compiler to abandon the idea of fusing this sort with the input sort
     # (which introduces a computation cycle and leads to a crash).
     # TODO(kitaev): remove "sticker_" variable if XLA is fixed.
     sticker_ = sticker + jax.lax.convert_element_type(
         slogits[0] > 0, sticker.dtype)
     _, logits = jax.lax.sort_key_val(sticker_, slogits, dimension=-1)
     return o, logits
    def single_call(self, qk, v, buckets, rng=None):
        # We use the same vector as both a query and a key.
        seqlen = qk.shape[-2]
        assert int(buckets.shape[0]) == self.n_hashes * seqlen

        ticker = jax.lax.tie_in(qk, np.arange(self.n_hashes * seqlen))
        buckets_and_t = seqlen * buckets + (ticker % seqlen)
        buckets_and_t = jax.lax.stop_gradient(buckets_and_t)

        # Hash-based sort ("s" at the start of variable names means "sorted")
        sbuckets_and_t, sticker = jax.lax.sort_key_val(buckets_and_t,
                                                       ticker,
                                                       dimension=-1)
        _, undo_sort = jax.lax.sort_key_val(sticker, ticker, dimension=-1)
        sbuckets_and_t = jax.lax.stop_gradient(sbuckets_and_t)
        sticker = jax.lax.stop_gradient(sticker)
        undo_sort = jax.lax.stop_gradient(undo_sort)

        st = (sticker % seqlen)
        sqk = np.take(qk, st, axis=0)
        sv = np.take(v, st, axis=0)

        # Split off a "bin" axis so that attention only occurs within chunks.
        bq_t = bkv_t = np.reshape(st, (self.n_hashes * self.n_bins, -1))
        bqk = np.reshape(sqk, (self.n_hashes * self.n_bins, -1, sqk.shape[-1]))
        bv = np.reshape(sv, (self.n_hashes * self.n_bins, -1, sv.shape[-1]))
        bq_buckets = bkv_buckets = np.reshape(
            sbuckets_and_t // seqlen, (self.n_hashes * self.n_bins, -1))

        # Hashing operates on unit-length vectors. Unnormalized query vectors are
        # fine because they effectively provide a learnable temperature for the
        # attention softmax, but normalizing keys is needed so that similarity for
        # the purposes of attention correctly corresponds to hash locality.
        bq = bqk
        bk = self.make_unit_length(bqk)

        # Allow each chunk to attend within itself, and also one chunk back. Chunk
        # boundaries might occur in the middle of a sequence of items from the
        # same bucket, so this increases the chances of attending to relevant items.
        # TODO(kitaev): benchmark whether XLA pad operation is noticeably faster.
        def look_one_back(x):
            if len(x.shape) == 2:
                x_extra = np.concatenate([x[-1:, :], x[:-1, :]], axis=0)
            else:
                x_extra = np.concatenate([x[-1:, :, :], x[:-1, :, :]], axis=0)
            return np.concatenate([x, x_extra], axis=1)

        bk = look_one_back(bk)
        bv = look_one_back(bv)
        bkv_t = look_one_back(bkv_t)
        bkv_buckets = look_one_back(bkv_buckets)

        # Dot-product attention.
        dots = np.matmul(bq, np.swapaxes(bk, -1, -2)) / np.sqrt(bq.shape[-1])

        # Causal masking
        mask = jax.lax.convert_element_type(
            jax.lax.lt(bq_t[:, :, None], bkv_t[:, None, :]), np.float32)
        dots = dots - 1e9 * mask

        # Mask out attention to self except when no other targets are available.
        self_mask = jax.lax.convert_element_type(
            jax.lax.eq(bq_t[:, :, None], bkv_t[:, None, :]), np.float32)
        dots = dots - 1e5 * self_mask

        # Mask out attention to other hash buckets.
        if not self._attend_across_buckets:
            bucket_mask = jax.lax.convert_element_type(
                jax.lax.ne(bq_buckets[:, :, None], bkv_buckets[:, None, :]),
                np.float32)
            dots = dots - 1e7 * bucket_mask

        # Don't double-count query-key pairs across multiple rounds of hashing.
        # There are two possible strategies here. (1) The default is to count how
        # many times a query-key pair is repeated, and to lower its log-prob
        # correspondingly at each repetition. (2) When hard_k is set, the code
        # instead masks all but the first occurence of each query-key pair.
        # TODO(kitaev): is one strategy faster or more numerically stable?
        if not self._allow_duplicate_attention:
            locs1 = undo_sort // bq_t.shape[-1]
            locs2 = (locs1 + 1) % (self.n_hashes * self.n_bins)
            if not self._attend_across_buckets:
                locs1 = buckets * (self.n_hashes * self.n_bins) + locs1
                locs2 = buckets * (self.n_hashes * self.n_bins) + locs2
            locs = np.moveaxis(
                np.concatenate([
                    np.reshape(locs1, (self.n_hashes, seqlen)),
                    np.reshape(locs2, (self.n_hashes, seqlen)),
                ], 0), 0, -1)  # produces shape (seqlen, 2 * self.n_hashes)
            slocs = np.take(locs, st, axis=0)
            b_locs = np.reshape(
                slocs, (self.n_hashes * self.n_bins, -1, 2 * self.n_hashes))
            # Queries always use the primary location (based on locs1).
            b_locs1 = b_locs[:, :, None, :self.n_hashes]
            if self._hard_k > 0:
                range_n_hashes = jax.lax.tie_in(b_locs,
                                                np.arange(self.n_hashes))
                nouse_locs = (range_n_hashes[:, None] >
                              range_n_hashes[None, :])
                nouse_locs = 2 * nouse_locs - 1  # 1 = use, -1 = don't use
                nouse_locs = np.reshape(
                    np.broadcast_to(
                        nouse_locs[:, None, :],
                        (self.n_hashes, self.n_bins, self.n_hashes)),
                    (self.n_hashes * self.n_bins, 1, 1, self.n_hashes))
                b_locs1 = b_locs1 * nouse_locs
            bq_locs = np.broadcast_to(b_locs1,
                                      b_locs.shape[:2] + (2, self.n_hashes))
            bq_locs = np.reshape(bq_locs, b_locs.shape)
            bkv_locs = look_one_back(b_locs)

            dup_counts = np.sum(jax.lax.convert_element_type(
                jax.lax.eq(bq_locs[:, :, None, :], bkv_locs[:, None, :, :]),
                np.float32),
                                axis=-1)
            assert dup_counts.shape == dots.shape
            if self._hard_k > 0:
                dots = dots - 1e7 * jax.lax.stop_gradient(dup_counts)
            else:
                dots = dots - jax.lax.stop_gradient(np.log(dup_counts + 1e-9))

        # Each query only attends to the top k most relevant keys.
        if self._hard_k > 0:
            b_top_dots = np.sort(dots)[...,
                                       -self._hard_k:]  # Get the top k dots.
            b_top_dots = jax.lax.stop_gradient(b_top_dots)
            s_top_dots = np.reshape(b_top_dots, (-1, self._hard_k))
            top_dots = np.take(s_top_dots, undo_sort, axis=0)

            merged_top_dots = np.moveaxis(
                np.reshape(top_dots, (self.n_hashes, seqlen, self._hard_k)), 0,
                -1)
            merged_top_dots = np.reshape(merged_top_dots, (seqlen, -1))

            dots_thresh = np.sort(merged_top_dots)[:, -self._hard_k]
            # It's possible to compute the partition function at this point, but right
            # now this codepath isn't set up for backprop, and there might also be
            # issues computing it this way if two dot-products are exactly equal.

            sdots_thresh = dots_thresh[st]
            bdots_thresh = np.reshape(sdots_thresh,
                                      (self.n_hashes * self.n_bins, -1))
            bdots_thresh = jax.lax.stop_gradient(bdots_thresh)

            top_k_mask = jax.lax.convert_element_type(
                dots < bdots_thresh[..., None], np.float32)
            dots = dots - 1e7 * jax.lax.stop_gradient(top_k_mask)

        # Softmax.
        dots_logsumexp = backend.logsumexp(dots, axis=-1, keepdims=True)
        dots = np.exp(dots - dots_logsumexp)

        if self._dropout > 0.0:
            # Dropout is broadcast across the bin dimension
            dropout_shape = (1, dots.shape[-2], dots.shape[-1])
            keep_prob = jax.lax.tie_in(dots, 1.0 - self._dropout)
            keep = backend.random.bernoulli(rng, keep_prob, dropout_shape)
            multiplier = keep.astype(dots.dtype) / jax.lax.tie_in(
                keep, keep_prob)
            dots = dots * multiplier

        bo = np.matmul(dots, bv)
        so = np.reshape(bo, (-1, bo.shape[-1]))
        slogits = np.reshape(dots_logsumexp, (-1, ))

        def unsort_for_output_impl(so, slogits):
            o = np.take(so, undo_sort, axis=0)
            # Sorting is considerably faster than gather, but first we need to get the
            # XLA compiler to abandon the idea of fusing this sort with the input sort
            # (which introduces a computation cycle and leads to a crash).
            # TODO(kitaev): remove "sticker_" variable if XLA is fixed.
            sticker_ = sticker + jax.lax.convert_element_type(
                slogits[0] > 0, sticker.dtype)
            _, logits = jax.lax.sort_key_val(sticker_, slogits, dimension=-1)
            return o, logits

        def unsort_for_output_vjp(so, slogits):
            """Custom gradient for unsort_for_output."""
            so = jax.lax.stop_gradient(so)
            slogits = jax.lax.stop_gradient(slogits)
            o, logits = unsort_for_output_impl(so, slogits)

            def vjpfun(o_logits_grads):
                so_grad = np.take(o_logits_grads[0], sticker, axis=0)
                # TODO(kitaev): this exists to match the forward pass, but I'm not sure
                # if it's actually required.
                buckets_and_t_ = buckets_and_t + jax.lax.convert_element_type(
                    o_logits_grads[1][0] > 0, buckets_and_t.dtype)
                _, slogits_grad = jax.lax.sort_key_val(buckets_and_t_,
                                                       o_logits_grads[1],
                                                       dimension=-1)
                return (so_grad, slogits_grad)

            return (o, logits), vjpfun

        unsort_for_output = jax.custom_transforms(unsort_for_output_impl)
        jax.defvjp_all(unsort_for_output, unsort_for_output_vjp)
        o, logits = unsort_for_output_impl(so, slogits)

        if self.n_hashes == 1:
            out = o
        else:
            o = np.reshape(o, (self.n_hashes, seqlen, o.shape[-1]))
            logits = np.reshape(logits, (self.n_hashes, seqlen, 1))
            probs = np.exp(logits -
                           backend.logsumexp(logits, axis=0, keepdims=True))
            out = np.sum(o * probs, axis=0)

        assert out.shape == v.shape
        return out
Exemple #4
0
 def forward(self, x, weights):
   return np.take(weights, x, axis=0)
Exemple #5
0
 def forward(self, x, params=(), state=(), **kwargs):
     del kwargs
     return np.take(params, x, axis=0), state