Exemple #1
0
 def significance_weights(mask):
   # (repr,) -> (batch, length, repr)
   # significance = [0, 1, 2]
   significance = serializer.significance_map
   assert significance.shape[0] * 2 == mask.shape[2]
   significance = jnp.repeat(significance[jnp.newaxis, ...], repeats=2, axis=0)
   # significance = [0, 1, 2, 0, 1, 2]
   significance = jnp.concatenate(significance, axis=0)
   assert significance.shape[0] == mask.shape[2]
   # significance = batch_size * [0, 1, 2, 0, 1, 2]
   significance = jnp.repeat(
       significance[np.newaxis, ...], repeats=mask.shape[0], axis=0)
   # significance = batch_size * [0, 1, 2, 0, 1, 2] * mask.shape[1]
   significance = jnp.repeat(
       significance[..., jnp.newaxis], repeats=mask.shape[1], axis=2)
   # significance = batch_size *  mask.shape[1] * [0, 1, 2, 0, 1, 2]
   significance = jnp.swapaxes(significance, 1, 2)
   assert significance.shape == mask.shape
   sig_weights = mask * decay ** significance
   batch_size = sig_weights.shape[0]
   mask_size = sig_weights.shape[1]*sig_weights.shape[2]
   # TODO(henrykm): Make sure that the reshape works in the desired way
   sig_weights = np.reshape(sig_weights, (batch_size, mask_size))
   # Alternatively we also can do something like
   # sig_weights = jnp.concatenate(sig_weights, axis=1)
   # sig_weights = jnp.concatenate(sig_weights, axis=0)
   # sig_weights = jnp.reshape(sig_weights, (batch_size, mask_size))
   return sig_weights
Exemple #2
0
    def _funnel_mask(self, batch_size, keys_len, queries_len, funnel_factor,
                     is_upsampling):
        """Creates a funnel mask.

    This function based on keys/queries lengths creates a triangle mask
    that prevents tokens from attending to positions following it.

    If funnel_factor is not equal to 1 due to funnel upsampling or
    downsampling it adjusts created mask for funnel attention
    by repeating each element funnel_factor times.

    This is because after funnel layer one token attends to funnel_factor
    different tokens in downsampling. During upsampling on the other hand
    funnel_factor tokens are attending to single token before upsampling.

    Args:
      batch_size: batch size.
      keys_len: keys length.
      queries_len: queries length.
      funnel_factor: funnel factor.
      is_upsampling: upsampling if set to True.

    Returns:
      Funnel mask.
    """

        if self._mode == 'predict':
            # We cannot generate more than one token because it contradicts
            # all autoregressive properties
            assert queries_len == 1
            mask = jnp.arange(
                self._max_len) <= (self.state // self._total_kv_pooling)
            mask = jnp.reshape(mask, (1, 1, 1, self._max_len))
            mask = jnp.repeat(mask, batch_size, axis=0)
            self.state += self._n_raw_tokens_generated
            return mask

        if funnel_factor != 1:
            if not is_upsampling:
                mask = jnp.tril(
                    jnp.ones((queries_len, queries_len), dtype=jnp.bool_))
                mask = jnp.repeat(mask, funnel_factor, axis=-1)
            else:
                mask = jnp.tril(jnp.ones((keys_len, keys_len),
                                         dtype=jnp.bool_))
                mask = jnp.repeat(mask, funnel_factor, axis=-2)
        else:
            mask = jnp.tril(
                jnp.ones((queries_len, queries_len), dtype=jnp.bool_))

        return jnp.repeat(mask[None, None, :, :], batch_size, axis=0)
Exemple #3
0
 def _run_value_model(self, obs, use_eval_model=True):
   """Runs value model."""
   n_devices = fastmath.device_count()
   if use_eval_model:
     weights = tl.for_n_devices(self._value_eval_model.weights, n_devices)
     state = tl.for_n_devices(self._value_eval_model.state, n_devices)
     rng = self._value_eval_model.rng
   else:
     # TODO(henrykm): this strangely looking solution address the problem that
     # value_batches_stream calls _run_value_model _once_ before
     # the trainer is initialized.
     try:
       weights = tl.for_n_devices(self._value_trainer.model_weights, n_devices)
       state = tl.for_n_devices(self._value_trainer.model_state, n_devices)
       rng = self._value_trainer._rng  # pylint: disable=protected-access
     except AttributeError:
       weights = tl.for_n_devices(self._value_eval_model.weights, n_devices)
       state = tl.for_n_devices(self._value_eval_model.state, n_devices)
       rng = self._value_eval_model.rng
   # TODO(henrykm): the line below fails on TPU with the error
   # ValueError: Number of devices (8) does not evenly divide batch size (1).
   obs_batch = obs.shape[0]
   if n_devices > obs_batch:
     obs = jnp.repeat(obs, int(n_devices / obs_batch), axis=0)
   values, _ = self._value_eval_jit(obs, weights, state, rng)
   values = values[:obs_batch]
   values *= self._value_network_scale
   return values
Exemple #4
0
 def significance_weights(mask):
   # (repr,) -> (batch, length, repr)
   # significance = [0, 1, 2]
   significance = serializer.significance_map
   assert significance.shape[0] == mask.shape[2]
   # significance = batch_size * [0, 1, 2]
   significance = jnp.repeat(
       significance[np.newaxis, ...], repeats=mask.shape[0], axis=0)
   # significance = batch_size * [0, 1, 2] * mask.shape[1]
   significance = jnp.repeat(
       significance[..., jnp.newaxis], repeats=mask.shape[1], axis=2)
   # significance = batch_size *  mask.shape[1] * [0, 1, 2]
   significance = jnp.swapaxes(significance, 1, 2)
   assert significance.shape == mask.shape
   sig_weights = mask * decay ** significance
   return sig_weights
Exemple #5
0
 def representation_mask(mask):
     # mask shape (batch_size,4)
     mask = jnp.amax(mask, axis=tuple(range(2, mask.ndim)))
     # mask shape (batch_size,4)
     mask = jnp.repeat(mask[..., jnp.newaxis],
                       repeats=serializer.representation_length,
                       axis=2)
     # mask shape (batch_size,4,representation_length)
     return mask
Exemple #6
0
    def _funnel_mask(batch_size, keys_len, queries_len, funnel_factor,
                     is_upsampling):
        """Funnel mask.

    Args:
      batch_size: batch size.
      keys_len: keys length.
      queries_len: queries length.
      funnel_factor: funnel factor.
      is_upsampling: True or False.

    Returns:
      funnel mask.

    This function based on keys/queries lengths creates a triangle mask
    that prevents tokens from attending to positions following it.

    If funnel_factor is not equal to 1 due to funnel upsampling or
    downsampling it adjusts created mask for funnel attention
    by repeating each element funnel_factor times.

    This is because after funnel layer one token attends to funnel_factor
    different tokens in downsampling. During upsampling on the other hand
    funnel_factor tokens are attending to single token before upsampling.
    """

        if funnel_factor != 1:
            if not is_upsampling:
                mask = jnp.tril(
                    jnp.ones((queries_len, queries_len), dtype=jnp.bool_))
                mask = jnp.repeat(mask, funnel_factor, axis=-1)
            else:
                mask = jnp.tril(jnp.ones((keys_len, keys_len),
                                         dtype=jnp.bool_))
                mask = jnp.repeat(mask, funnel_factor, axis=-2)
        else:
            mask = jnp.tril(
                jnp.ones((queries_len, queries_len), dtype=jnp.bool_))

        return jnp.repeat(mask[None, None, :, :], batch_size, axis=0)
Exemple #7
0
 def _run_value_model(self, obs):
     """Runs value model."""
     n_devices = fastmath.device_count()
     weights = tl.for_n_devices(self._value_eval_model.weights, n_devices)
     state = tl.for_n_devices(self._value_eval_model.state, n_devices)
     rng = self._value_eval_model.rng
     # TODO(henrykm): the line below fails on TPU with the error
     # ValueError: Number of devices (8) does not evenly divide batch size (1).
     obs_batch = obs.shape[0]
     if n_devices > obs_batch:
         obs = jnp.repeat(obs, int(n_devices / obs_batch), axis=0)
     values, _ = self._value_eval_jit(obs, weights, state, rng)
     values = values[:obs_batch]
     values *= self._value_network_scale
     return values
Exemple #8
0
  def one_step(self, batch, rng, step=0, learning_rate=None):
    """Updates layers weights/state and optimizers slots by running one step.

    Args:
      batch: Batch of data to use for optimization.
      rng: Random number generator to use for running this step.
      step: Which step of the training are we running.
      learning_rate: Learning rate to use instead of the default one.

    Returns:
      Tuple (loss, stats) with new values from one step
      of training, where stats are all optimizer statistics.
    """
    # Update the learning rate if needed.
    if learning_rate is not None:
      self._replicated_loss_opt_params['learning_rate'] = tl.for_n_devices(
          learning_rate, self._n_devices)
      for (std_op, rev_ops) in self._replicated_opt_params:
        std_op['learning_rate'] = tl.for_n_devices(
            learning_rate, self._n_devices)
        for op in rev_ops:
          op['learning_rate'] = tl.for_n_devices(
              learning_rate, self._n_devices)

    # Batch needs to be split across the local devices -- the difference
    # between _for_n_devices and _reshape_by_device is that the latter splits
    # the batch dim to batch // n_devices, vs _for_n_devices
    # broadcasts/replicates to n_devices dimension.
    if self._n_devices > 1:
      batch = tl.reshape_by_device(batch, self._n_devices)
      step = jnp.repeat(step, self._n_devices)

    # Create separate rng for each device and layer.
    if self._n_devices == 1:
      rngs = fastmath.random.split(rng, self._n_layers)
    else:
      # Splitting by device first to be identical with default trainer.
      per_device_rng = fastmath.random.split(rng, self._n_devices)
      per_device_rngs = [
          fastmath.random.split(r, self._n_layers) for r in per_device_rng]
      rngs = [jnp.stack([r[i] for r in per_device_rngs])
              for i in range(self._n_layers)]
    # Group rngs by layer blocks.
    rng_blocks, rng_i = [], 0
    for _, rev_layers in self._blocks:
      l = len(rev_layers)
      rng_blocks.append((rngs[rng_i], rngs[rng_i + 1: rng_i + l + 1]))
      rng_i += l + 1

    # Run the layers forward upto the loss layer.
    stack = batch
    block_inputs_states = []
    for i, (std_layer, rev_layers) in enumerate(self._blocks):
      acc_std_layer_fn, acc_rev_layer_fns = self._accelerated_layer_fns[i]
      std_rng, rev_rngs = rng_blocks[i]
      # Run the standard layer.
      stack, std_inputs, std_state = self._run_forward_standard(
          stack, std_layer, acc_std_layer_fn, std_rng)

      # Run the reversible layers and collect old and new states.
      stack, rev_old_states, rev_new_states = self._run_forward_reversible(
          stack, rev_layers, acc_rev_layer_fns, rev_rngs)
      block_inputs_states.append(
          ((std_inputs, std_state), (rev_old_states, rev_new_states)))

    # Run the loss layer forward and backward with optimizer update.
    loss_state = self._replicate(self._loss_layer.state)
    loss_inputs = cb.inputs_from_stack(stack, self._loss_layer.n_in)
    loss_stats, grad_stack = self._run_backward_standard(
        None, step, self._loss_layer, loss_inputs,
        loss_state, self._loss_fbo, rngs[-1], self._loss_opt,
        self._replicated_loss_opt_params)
    stats = [loss_stats]

    # Run the layers backward and run optimizer updates.
    for i in range(len(self._blocks) - 1, -1, -1):
      std_layer, rev_layers = self._blocks[i]
      (std_inputs, std_state), (rev_old_states,
                                rev_new_states) = block_inputs_states[i]
      std_fbo, rev_fbos = self._fbos[i]
      std_opt, rev_opts = self._optimizers[i]
      std_rng, rev_rngs = rng_blocks[i]
      repl_std_opt_params, repl_rev_opts_params = self._replicated_opt_params[i]

      # Run reversible layers backward with optimizer update.
      stack, grad_stack, new_stats = self._run_backward_reversible(
          stack, grad_stack, step, rev_layers, rev_fbos, rev_old_states,
          rev_new_states, rev_rngs, rev_opts, repl_rev_opts_params)
      stats.extend(new_stats)

      # Run the standard layer forward-and-backward pass and optimizer update.
      std_layer_stats, grad_stack = self._run_backward_standard(
          grad_stack, step, std_layer, std_inputs, std_state, std_fbo, std_rng,
          std_opt, repl_std_opt_params)
      stack = cb.outputs_onto_stack(  # Put layer inputs on the stack.
          std_inputs, stack, std_layer.n_out)
      stats.append(std_layer_stats)

    # Join stats from different optimizers into one.
    joint_stats = {}
    for i, stat in enumerate(reversed(stats)):
      for k, v in stat.items():
        joint_stats[f'layer{i}/' + k] = v
    return stats[0]['loss'], joint_stats
Exemple #9
0
 def multi_device_update_fn(
     weights_and_slots, step, opt_params, batch, state, rng):
   # Need to replicate step to n_devices leading dimension.
   return _multi_device_update_fn(weights_and_slots,
                                  jnp.repeat(step, n_devices), opt_params,
                                  batch, state, rng)
Exemple #10
0
 def update(weights_and_slots, i, opt_params, batch, state, rng):
     return mapped_update(weights_and_slots, np.repeat(i, n_devices),
                          opt_params, batch, state, rng)
Exemple #11
0
    def one_step(self, batch, rng, step=0, learning_rate=None):
        """Updates layers weights/state and optimizers slots by running one step.

    Args:
      batch: Batch of data to use for optimization.
      rng: Random number generator to use for running this step.
      step: Which step of the training are we running.
      learning_rate: Learning rate to use instead of the default one.

    Returns:
      Tuple (loss, stats) with new values from one step
      of training, where stats are all optimizer statistics.
    """
        # Update the learning rate if needed.
        if learning_rate is not None:
            for op in self._replicated_opt_params:
                op['learning_rate'] = tl.for_n_devices(learning_rate,
                                                       self._n_devices)

        # Batch needs to be split across the local devices -- the difference
        # between _for_n_devices and _reshape_by_device is that the latter splits
        # the batch dim to batch // n_devices, vs _for_n_devices
        # broadcasts/replicates to n_devices dimension.
        if self._n_devices > 1:
            batch = tl.reshape_by_device(batch, self._n_devices)
            step = jnp.repeat(step, self._n_devices)

        # Separate rng needs to be created for each device.
        if self._n_devices == 1:
            rngs = fastmath.random.split(rng, len(self._reversible_layers) + 2)
        else:
            # Splitting by device first to be identical with default trainer.
            per_device_rng = fastmath.random.split(rng, self._n_devices)
            per_device_rngs = [
                fastmath.random.split(r,
                                      len(self._reversible_layers) + 2)
                for r in per_device_rng
            ]
            rngs = [
                jnp.stack([r[i] for r in per_device_rngs])
                for i in range(len(self._reversible_layers) + 2)
            ]

        # Run the layers forward upto the loss layer.
        stack = batch

        # Run the first layer.
        first_layer_inputs = _inputs_from_stack(self._first_layer, stack)
        first_layer_weights = self._replicate(self._first_layer.weights)
        first_layer_state = self._replicate(self._first_layer.state)
        outputs, first_layer_new_state = self._accelerated_first_layer_fn(
            first_layer_inputs, first_layer_weights, first_layer_state,
            rngs[0])
        stack = _outputs_onto_stack(self._first_layer, outputs, stack)

        # Run the reversible layers and collect old and new states.
        old_states, new_states = [], []
        for i, layer in enumerate(self._reversible_layers):
            weights = self._replicate(
                layer.weights)  # also copies cpu -> accelerator
            state = self._replicate(layer.state)
            old_states.append(state)
            inputs = _inputs_from_stack(layer, stack)
            outputs, new_state = self._accelerated_reversible_layers_fns[i](
                inputs, weights, state, rngs[i + 1])
            stack = _outputs_onto_stack(layer, outputs, stack)
            new_states.append(new_state)

        # Run the loss layer forward and backward with optimizer update.
        loss_weights = self._replicate(self._loss_layer.weights)
        loss_state = self._replicate(self._loss_layer.state)
        loss_inputs = _inputs_from_stack(self._loss_layer, stack)
        loss_slots = self._replicate(self._optimizers[-1].slots)
        new_weights, new_state, new_slots, grad_stack, loss_stats = self._loss_fbo(
            loss_inputs, loss_weights, loss_state, loss_slots,
            self._replicated_opt_params[-1], rngs[-1], step)
        stats = [loss_stats]
        self._loss_layer.weights = self._unreplicate(
            new_weights)  # acceler. -> cpu
        self._loss_layer.state = self._unreplicate(new_state)
        self._optimizers[-1].slots = self._unreplicate(new_slots)

        # Run reversible layers backward with optimizer update.
        counter = -1
        for layer, reverse_and_fbo, old_state, new_state, rng in reversed(
                list(
                    zip(self._reversible_layers, self._reverse_and_fbos,
                        old_states, new_states, rngs[1:-1]))):
            counter -= 1
            # We are running backwards and reversing, so we get *outputs* from stack.
            outputs = _inputs_from_stack(layer, stack, layer.n_out)
            grads = _inputs_from_stack(layer, grad_stack, layer.n_out)
            slots = self._replicate(self._optimizers[counter].slots)
            opt_params = self._replicated_opt_params[counter]
            weights = self._replicate(layer.weights)  # cpu -> accelerator
            new_weights, new_slots, inputs, grads, layer_stats = reverse_and_fbo(
                outputs, weights, old_state, new_state, slots, opt_params, rng,
                step, grads)
            layer.weights = self._unreplicate(
                new_weights)  # accelerator -> cpu
            layer.state = self._unreplicate(new_state)
            self._optimizers[counter].slots = self._unreplicate(new_slots)
            stats.append(layer_stats)
            stack = _outputs_onto_stack(layer, inputs, stack, layer.n_out,
                                        layer.n_in)
            grad_stack = _outputs_onto_stack(layer, grads, grad_stack,
                                             layer.n_out, layer.n_in)

        # Run the first layer forward-and-backward pass and optimizer update.
        grads = _inputs_from_stack(self._first_layer, grad_stack,
                                   self._first_layer.n_out)
        slots = self._replicate(self._optimizers[0].slots)
        new_weights, new_state, new_slots, first_layer_stats = self._first_fbo(
            first_layer_inputs, first_layer_weights, first_layer_new_state,
            slots, self._replicated_opt_params[0], rngs[0], step, grads)
        stats.append(first_layer_stats)
        self._first_layer.weights = self._unreplicate(new_weights)
        self._first_layer.state = self._unreplicate(new_state)
        self._optimizers[0].slots = self._unreplicate(new_slots)

        return stats[0]['loss'], stats
Exemple #12
0
def NaiveUpsampling(shorten_factor, d_model, *args,
                    **kwargs):  # pylint: disable = unused-argument
    return core.Fn('Repeat', lambda x: jnp.repeat(x, shorten_factor, axis=1))