Exemple #1
0
    def test_category_accuracy(self):
        layer = tl.CategoryAccuracy()
        targets = np.array([0, 1, 2])

        model_outputs = np.array([[.7, .2, .1, 0.], [.2, .7, .1, 0.],
                                  [.2, .1, .7, 0.]])
        accuracy = layer([model_outputs, targets])
        self.assertEqual(accuracy, 1.0)

        model_outputs = np.array([[.2, .1, .7, 0.], [.2, .1, .7, 0.],
                                  [.2, .1, .7, 0.]])
        accuracy = layer([model_outputs, targets])
        self.assertEqual(accuracy, 1 / 3)
Exemple #2
0
                                                  train_data, len_input,
                                                  batch_size))
    recommender = RecommenderTransformer(n_classes_in=len(classes),
                                         embedding_size=embedding_size,
                                         n_out_classes=len(classes),
                                         dropout_rate=dropout_rate)

    n_train_b = math.floor(float(len(train_data)) / float(batch_size))
    train_task = ts.training.TrainTask(
        labeled_data=inputs_train,
        loss_layer=tl.CategoryCrossEntropy(),
        optimizer=trax.optimizers.Adam(learning_rate),
        n_steps_per_checkpoint=
        400,  #This will print the results at every 200 training steps.
    )
    n_eval_b = math.floor(float(len(val_data)) / float(batch_size))
    # Evaluaton task.
    eval_task = ts.training.EvalTask(
        labeled_data=inputs_test,
        metrics=[tl.CategoryCrossEntropy(),
                 tl.CategoryAccuracy()],
        n_eval_batches=n_eval_b)

    training_loop = ts.training.Loop(recommender,
                                     train_task,
                                     eval_tasks=[eval_task],
                                     output_dir=out_folder)

    # Run 2000 steps (batches).
    training_loop.run(2000)