Exemple #1
0
 def test_mask_of_right_shift_unshifted(self):
     layer = transformer._MaskOfRightShiftedArray(n_shifts=0)
     x = np.array([[9, 8, 7, 0], [1, 2, 0, 0]])
     y = layer(x)
     np.testing.assert_equal(
         y, np.array([[True, True, True, False], [True, True, False,
                                                  False]]))
Exemple #2
0
 def test_mask_of_right_shift(self):
     layer = transformer._MaskOfRightShiftedArray(n_positions=2)
     x = np.array([[0, 0, 9, 8, 7, 0], [0, 0, 1, 2, 0, 0]])
     y = layer(x)
     np.testing.assert_equal(
         y,
         np.array([[True, True, True, True, True, False],
                   [True, True, True, True, False, False]]))
Exemple #3
0
  def test_mask_of_right_shift_3dims(self):
    layer = transformer._MaskOfRightShiftedArray(n_shifts=2)

    # pylint: disable=bad-whitespace
    x = np.array(
        [[[ 0,  0],
          [ 0,  0],
          [ 1,  2],
          [ 3,  4],
          [ 5,  6],
          [ 7,  8],
          [ 9, 10],
          [ 0,  0],
          [ 0,  0]],

         [[ 0,  0],
          [ 0,  0],
          [11, 12],
          [13, 14],
          [15, 16],
          [17, 18],
          [19, 20],
          [ 0,  0],
          [ 0,  0]]]
    )
    # pylint: enable=bad-whitespace

    y = layer(x)
    np.testing.assert_equal(
        y,
        # pylint: disable=bad-whitespace
        np.array(
            [[[ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ False, False],
              [ False, False]],

             [[ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ True,  True],
              [ False, False],
              [ False, False]]]
        )
        # pylint: enable=bad-whitespace
    )
Exemple #4
0
def TransformerNoEncDecAttention(input_vocab_size,
                                 output_vocab_size=None,
                                 d_model=512,
                                 d_ff=2048,
                                 n_encoder_layers=6,
                                 n_decoder_layers=6,
                                 n_heads=8,
                                 dropout=0.1,
                                 dropout_shared_axes=None,
                                 max_len=2048,
                                 mode='train',
                                 ff_activation=tl.Relu):
  """Returns a Transformer model.

  This model expects an input pair: target, source.

  Args:
    input_vocab_size: int: vocab size of the source.
    output_vocab_size: int (optional): vocab size of the target. If None, the
      source and target are assumed to have the same vocab.
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    n_encoder_layers: int: number of encoder layers
    n_decoder_layers: int: number of decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    dropout_shared_axes: axes on which to share dropout mask
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'
    ff_activation: the non-linearity in feed-forward layer

  Returns:
    A Transformer model as a layer that maps from a target, source pair to
    activations over a vocab set.
  """
  def PositionalEncoder(vocab_size):  # tokens --> vectors
    return [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        tl.PositionalEncoding(max_len=max_len),
    ]

  in_encoder = PositionalEncoder(input_vocab_size)
  out_encoder = (in_encoder if output_vocab_size is None
                 else PositionalEncoder(output_vocab_size))
  if output_vocab_size is None:
    output_vocab_size = input_vocab_size

  encoder_blocks = [
      transformer._EncoderBlock(d_model, d_ff, n_heads, dropout,  # pylint: disable=protected-access
                                dropout_shared_axes, mode, ff_activation)
      for i in range(n_encoder_layers)]

  encoder = tl.Serial(
      in_encoder,
      encoder_blocks,
      tl.LayerNorm()
  )
  if mode == 'predict':
    encoder = tl.Cache(encoder)

  decoder_blocks = [
      transformer._DecoderBlock(d_model, d_ff, n_heads, dropout,  # pylint: disable=protected-access
                                dropout_shared_axes, mode, ff_activation)
      for i in range(n_decoder_layers)]

  # pylint: disable=protected-access
  # Assemble and return the model.
  return tl.Serial(
      # Input: encoder_side_tokens, decoder_side_tokens
      # Copy decoder tokens for use in loss.
      tl.Select([0, 0, 1, 1]),          # tok_e tok_e tok_d tok_d

      # Encode.
      tl.Branch([], tl.PaddingMask()),  # tok_e mask_e tok_e tok_d tok_d
      encoder,                          # vec_e mask_e tok_e tok_d tok_d

      # Simple encoder mask, doesn't contain extra dims.
      tl.Select([2, 0, 2], n_in=3),     # tok_e vec_e tok_e tok_d tok_d
      transformer._MaskOfRightShiftedArray(
          n_positions=0),               # mask_e vec_e tok_e tok_d tok_d

      # Decode.
      tl.Select([3, 1, 0, 2]),          #  tok_d vec_e mask_e tok_e tok_d
      tl.ShiftRight(mode=mode),         # stok_d vec_e mask_e tok_e tok_d
      tl.Branch(
          [],
          transformer._MaskOfRightShiftedArray()
      ),                                # stok_d mask_d vec_e mask_e tok_e tok_d
      out_encoder,                      # svec_d mask_d vec_e mask_e tok_e tok_d

      # Concat encoder and decoder.
      tl.Select([2, 0, 3, 1]),          # vec_e svec_d mask_e mask_d tok_e tok_d
      transformer._ConcatWithPadding(),  # vec_ed tok_e tok_d

      # Decoder blocks with causal attention
      decoder_blocks,                   # vec_ed tok_e tok_d
      tl.LayerNorm(),                   # vec_ed tok_e tok_d

      # Separate out the encoder part from the concatenated vector.
      tl.Select([0, 1, 2, 2]),          # vec_ed tok_e tok_d tok_d
      transformer._StripFromConcatenateWithPadding(),  # vec_d tok_d

      # Map to output vocab.
      tl.Dense(output_vocab_size),      # vec_d tok_d
      tl.LogSoftmax(),                  # vec_d tok_d
  )
Exemple #5
0
def ReformerNoEncDecAttention(input_vocab_size,
                              output_vocab_size=None,
                              d_model=512,
                              d_ff=2048,
                              d_attention_key=64,
                              d_attention_value=64,
                              n_encoder_layers=6,
                              n_decoder_layers=6,
                              n_heads=8,
                              dropout=0.1,
                              max_len=2048,
                              encoder_attention_type=tl.SelfAttention,
                              encoder_decoder_attention_type=tl.SelfAttention,
                              axial_pos_shape=(),
                              d_axial_pos_embs=None,
                              ff_activation=tl.Relu,
                              ff_use_sru=0,
                              ff_chunk_size=0,
                              ff_dropout=None,
                              mode='train'):
  """Reversible transformer encoder-decoder model.

  This model expects an input pair: source, target.

  At the moment, this model supports dot-product attention only. For the
  attention types in the Reformer paper, see ReformerLM.

  Args:
    input_vocab_size: int: vocab size of the source.
    output_vocab_size: int (optional): vocab size of the target. If None, the
      source and target are assumed to have the same vocab.
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    d_attention_key: int: depth of key vector for each attention head
    d_attention_value: int: depth of value vector for each attention head
    n_encoder_layers: int: number of encoder layers
    n_decoder_layers: int: number of decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    encoder_attention_type: class: attention class to use, such as SelfAttention
    encoder_decoder_attention_type: class: attention class to use, such as
      SelfAttention
    axial_pos_shape: tuple of ints: input shape to use for the axial position
      encoding. If unset, axial position encoding is disabled.
    d_axial_pos_embs: tuple of ints: depth of position embedding for each axis.
      Tuple length must match axial_pos_shape, and values must sum to d_model.
    ff_activation: the non-linearity in feed-forward layer
    ff_use_sru: int; if > 0, we use this many SRU layers instead of feed-forward
    ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks
    ff_dropout: float: (optional) separate dropout rate at feed-forward
      nonlinearity. This is called relu_dropout in T2T.
    mode: str: 'train' or 'eval'

  Returns:
    A Reformer model as a layer that maps from a target, source pair to
    activations over a vocab set.
  """
  # The current API for custom gradients assumes that a layer must be
  # differentiable wrt all of its inputs, but the Transformer puts bool-dtype
  # masks on the stack. This causes jax to error, even though the so-called
  # "gradient" wrt the masks is never actually computed.
  # TODO(kitaev): remove this hack.
  if fastmath.backend_name() == 'jax':
    jax.api._check_inexact_input_vjp = lambda x: None  # pylint: disable=protected-access

  def PositionalEncoder(vocab_size, mode):  # tokens --> vectors
    if not axial_pos_shape:
      positional_encoding = tl.PositionalEncoding(
          max_len=max_len, dropout=dropout, mode=mode)
    else:
      assert d_axial_pos_embs is not None
      positional_encoding = tl.AxialPositionalEncoding(
          shape=axial_pos_shape, d_embs=d_axial_pos_embs,
          dropout_broadcast_dims=tuple(range(1, len(axial_pos_shape) + 1)),
          dropout=dropout, mode=mode)

    return [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=[-2], mode=mode),
        positional_encoding,
    ]

  # TODO(kitaev): The regular trax Transformer shares vocab embeddings and
  # position embeddings between the encoder and decoder if output_vocab_size is
  # None. This isn't supported here because (a) Trax shares weights by sharing
  # layer instances, but we need two separate instances to have mode == 'eval'
  # for the encoder but mode == 'predict' for the decoder; and (b) tl.Cache does
  # not work if its sublayers participate in any weight sharing.

  # Mode 'predict' means that the decoder should be run one token at a time.
  # The encoder only ever runs over full sequences, which is why it's switched
  # to 'eval' mode instead.
  in_encoder = PositionalEncoder(
      input_vocab_size, mode='eval' if mode == 'predict' else mode)
  if output_vocab_size is None:
    output_vocab_size = input_vocab_size
  out_encoder = PositionalEncoder(output_vocab_size, mode)

  # pylint: disable=g-complex-comprehension
  encoder_blocks = [
      EncoderBlock(
          d_model, d_ff, n_heads, encoder_attention_type, dropout,
          ff_activation, ff_dropout, mode)
      for _ in range(n_encoder_layers)]
  # pylint: enable=g-complex-comprehension

  encoder = tl.Serial([                # tok_e mask_e tok_e tok_d tok_d
      in_encoder,                      # vec_e mask_e tok_e tok_d tok_d
      tl.Dup(),                        # vec_e1 vec_e2 mask_e tok_e tok_d tok_d
      tl.ReversibleSerial(encoder_blocks),
      tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0),
      tl.LayerNorm(),
  ])
  if mode == 'predict':
    encoder = tl.Cache(encoder)

  decoder_blocks = []

  if isinstance(encoder_decoder_attention_type, (tuple, list)):
    assert n_decoder_layers % len(encoder_decoder_attention_type) == 0
  else:
    encoder_decoder_attention_type = [encoder_decoder_attention_type]
  for layer_idx in range(n_decoder_layers):
    layer_attention_type = encoder_decoder_attention_type[
        layer_idx % len(encoder_decoder_attention_type)]
    decoder_block = DecoderBlock(
        d_model, d_ff, d_attention_key, d_attention_value, n_heads,
        attention_type=layer_attention_type,
        dropout=dropout,
        ff_activation=ff_activation,
        ff_use_sru=ff_use_sru,
        ff_chunk_size=ff_chunk_size,
        mode=mode)
    decoder_blocks.append(decoder_block)

  # Assemble and return the model.
  return tl.Serial(
      # Input: encoder_side_tokens, decoder_side_tokens
      # Copy decoder tokens for use in loss.
      tl.Select([0, 0, 1, 1]),                  # tok_e tok_e tok_d tok_d
      tl.Branch([], [tl.PaddingMask(),
                     tl.Fn('Squeeze',
                           lambda x: jnp.squeeze(x, (1, 2)), n_out=1)]),
      #                                         # tok_e mask_e tok_e tok_d tok_d

      # Encode.
      encoder,                                  # vec_e mask_e tok_e tok_d tok_d

      # Decode.
      tl.Select([3, 0, 1, 2]),                 #  tok_d vec_e mask_e tok_e tok_d
      tl.ShiftRight(mode=mode),                # stok_d vec_e mask_e tok_e tok_d
      tl.Branch(
          [],
          _MaskOfRightShiftedArray()
      ),                                # stok_d mask_d vec_e mask_e tok_e tok_d
      out_encoder,                      # svec_d mask_d vec_e mask_e tok_e tok_d

      # Concat encoder and decoder, given their masks.
      tl.Select([2, 0, 3, 1]),          # svec_d mask_d vec_e mask_e tok_e tok_d
      _ConcatWithPadding(),                        # vec_ed tok_e tok_d

      # Run (encoder and) decoder blocks.
      tl.Dup(),                                    # vec_ed1 vec_ed2 tok_e tok_d
      tl.ReversibleSerial(decoder_blocks),         # vec_ed1 vec_ed2 tok_e tok_d
      tl.Fn('XYAvg',
            lambda x, y: (x + y) / 2.0),           # vec_ed tok_e tok_d
      tl.LayerNorm(),                              # vec_ed tok_e tok_d

      # Separate out the encoder part from the concatenated vector.
      tl.Select([0, 1, 2, 2]),                     # vec_ed tok_e tok_d tok_d
      _StripFromConcatenateWithPadding(),          # vec_d tok_d

      # Map to output vocab.
      tl.Dense(output_vocab_size),                 # vec_d tok_d
      tl.LogSoftmax(),                             # vec_d tok_d
  )