return None

    if k == n:
        lst.append(root.val)

    if root is not None:
        k = k + 1
        traverse(root.leftChild, k, n, lst)
        traverse(root.rightChild, k, n, lst)

    return lst


def findKNodes(root, n):
    k = 0
    lst = []
    lst = traverse(root, k, n, lst)
    return lst


bst = BinarySearchTree(6)
bst.insert(4)
bst.insert(2)
bst.insert(5)
bst.insert(9)
bst.insert(8)
bst.insert(12)
bst.insert(10)
bst.insert(14)

print(findKNodes(bst.root, 2))
from tree.BinarySearchTree import BinarySearchTree
import random
from tree.bst_display import display

BST = BinarySearchTree(50)
for _ in range(15):
    ele = random.randint(0, 100)
    BST.insert(ele)

# We have hidden the code for this function but it is available for use!
display(BST.root)
print('\n')

print(BST.search(15))
print(BST.search(50))
Exemple #3
0
        first_line = s + x * '_' + (n - x) * ' '
        second_line = (u + x) * ' ' + '\\' + (n - x - 1) * ' '
        shifted_lines = [u * ' ' + line for line in lines]
        final_lines = [first_line, second_line] + shifted_lines
        return final_lines, n + u, p + 2, u // 2

    # Two children.
    left, n, p, x = _display_aux(node.leftChild)
    right, m, q, y = _display_aux(node.rightChild)
    s = '%s' % node.val
    u = len(s)
    first_line = (x + 1) * ' ' + (n - x - 1) * \
        '_' + s + y * '_' + (m - y) * ' '
    second_line = x * ' ' + '/' + \
        (n - x - 1 + u + y) * ' ' + '\\' + (m - y - 1) * ' '
    if p < q:
        left += [n * ' '] * (q - p)
    elif q < p:
        right += [m * ' '] * (p - q)
    zipped_lines = zip(left, right)
    lines = [first_line, second_line] + \
        [a + u * ' ' + b for a, b in zipped_lines]
    return lines, n + m + u, max(p, q) + 2, n + u // 2

BST = BinarySearchTree(15)

for _ in range(15):
    ele = random.randint(0,100)
    BST.insert(ele)

display(BST.root)
from tree.BinarySearchTree import BinarySearchTree
from tree.bst_display import display

bst = BinarySearchTree(50)
bst.insert_rec(31)
bst.insert(9)
bst.insert(32)
bst.insert(5)
bst.insert(23)
bst.insert(54)
bst.insert(62)
bst.insert(57)
bst.insert(78)
bst.insert(63)
bst.insert(75)

display(bst.root)
bst.delete(9)
display(bst.root)

bst.delete(62)
display(bst.root)
Exemple #5
0
from tree.BinarySearchTree import BinarySearchTree
from tree.bst_display import display
from tree.Node import Node


def findHeight(root):
    if root is None:  # check if root exists
        return -1  # no root means -1 height
    else:
        max_sub_tree_height = max(findHeight(
            root.leftChild), findHeight(
                root.rightChild))  # find the max height of the two sub-tree
        # add 1 to max height and return
        return 1 + max_sub_tree_height


BST = BinarySearchTree(6)
BST.insert(4)
BST.insert(9)
BST.insert(5)
BST.insert(2)
BST.insert(8)
BST.insert(12)
BST.insert(10)
BST.insert(14)

display(BST.root)
print(findHeight(BST.root))