def predict(self, X):
     check_is_fitted(self, 'base_model_')
     if not self.is_partial:
         return self.base_model_.predict(X)
     else:
         multi_class = self.n_classes_ > 2
         model_ = gbm_gen(self.partial_param_, X, self.base_param_[2],
                          self.base_param_[1], multi_class, self.n_classes_)
         preds = model_(self.partial_param_, X)
         if self.n_classes_ > 2:
             return np.argmax(preds, axis=1)
         else:
             return np.round(sigmoid(preds))
 def predict_proba(self, X):
     check_is_fitted(self, 'base_model_')
     if not self.is_partial:
         return self.base_model_.predict_proba(X)
     else:
         multi_class = self.n_classes_ > 2
         model_ = gbm_gen(self.partial_param_, X, self.base_param_[2],
                          self.base_param_[1], multi_class, self.n_classes_)
         preds = model_(self.partial_param_, X)
         if self.n_classes_ > 2:
             return preds
         else:
             pred_positive = sigmoid(preds)
             return np.stack([1 - pred_positive, pred_positive], axis=-1)
Exemple #3
0
        def training_loss(weights, idx=0):
            # Training loss is the negative log-likelihood of the training labels.
            t_idx_ = batch_indices(idx)
            preds = sigmoid(model_(weights, X[t_idx_, :]))
            label_probabilities = preds * y[t_idx_] + (1 - preds) * (1 -
                                                                     y[t_idx_])
            # print(label_probabilities)
            loglik = -np.sum(np.log(label_probabilities))

            num_unpack = 3
            reg = 0
            # reg_l1 = np.sum(np.abs(flattened)) * 1.
            for idx_ in range(0, len(weights), num_unpack):
                param_temp_ = weights[idx_:idx_ + num_unpack]
                flattened, _ = weights_flatten(param_temp_[:2])
                reg_l1 = np.sum(np.abs(flattened)) * 1.0
                reg += reg_l1
            return loglik + reg