Exemple #1
0
def drawTreeOnly(tree, plotLinesAttr, stree = None, 
                 allTipsZero = True, xroot = None, keepPositions = False,
                 coalAttr = None, txt = False) :
  assert not stree or allTipsZero

  # A mapping from node id to (positive) node height (with !allTipsZero, tips
  # may have > 0 height, at least one tip has 0 height). 
  nh = nodeHeights(tree, allTipsZero = allTipsZero)
  if stree is not None :
    snh = nodeHeights(stree)
    rl = _embSetLeftRight(tree, tree.root, nh, stree, snh)
    # position root in the middle
    if xroot is None :
      xroot = stree.node(stree.root).data.plotAux.center.center()

    _embDrawTreeOnly(tree, tree.root, xroot, nh, plotLinesAttr,
                    keepPositions, coalAttr, txt)
      
  else :
    # set auxiliary info per node
    rl = _setLeftRight(tree, tree.root, nh)
  
    # position root in the middle
    if xroot is None :
      xroot = (rl.right + rl.left)/2
  
      _drawTreeOnly(tree, tree.root, xroot, nh, plotLinesAttr, keepPositions, txt)
  
  for i in tree.all_ids() :
    del tree.node(i).data.cladeInfo
Exemple #2
0
def _adjustTips(tree, refTree) :
  nhs = nodeHeights(refTree, allTipsZero = False)
  nhsd = dict([(refTree.node(i).data.taxon,nhs[i])
               for i in nhs if not refTree.node(i).succ])
  for ni in tree.get_terminals():
    node = tree.node(ni)
    h = nhsd[node.data.taxon]
    if h > 0 :
      node.data.branchlength -= h
      if node.data.branchlength < 0 :
        #node branch too short for adjustment.
        #chop branches on the path to root. 
        #import pdb; pdb.set_trace()
        while node.id != tree.root :
          pr = tree.node(node.prev)
          b = node.data.branchlength
          node.data.branchlength = 0
          pr.data.branchlength += b
          # Other descendants should keep their height
          for i in pr.succ :
            if i != node.id :
              tree.node(i).data.branchlength -= b
          if pr.data.branchlength >= 0 :
            break
          node = pr
Exemple #3
0
def taxaPartitionsSummaryTree(trees, summaryType = "median", atz = False) :
  if summaryType not in ["mean", "median", "both"] :
    raise ValueError("summaryType should be one of mean, median, both")
  
  torder = _taxOrder(trees)
  hs = [list() for k in torder[:-1]]

  nhsd = None
  if not atz:
    tree = trees[0]
    nhs = nodeHeights(tree, allTipsZero = False)
    nhsd = [(tree.node(i).data.taxon, nhs[i])
            for i in nhs if not tree.node(i).succ]
    if any([h > 1e-13 for t,h in nhsd]) :
      nhsd = dict(nhsd)
    else :
      nhsd = None

  txp = dict(zip(torder,itertools.count()))
  for t in trees :
    _getCladeEstimates(t, txp, hs, nhsd)

  if summaryType in ["median","both"] :
    md = mau.mau2Tree((torder, [median(x) if len(x) else 0  for x in hs],
                             [(0,False) for x in hs]))
    if not atz :
      _adjustTips(md, trees[0])
               
  if summaryType in ["mean","both"] :
    mn = mau.mau2Tree((torder, [mean(x) if len(x) else 0 for x in hs],
                             [(0,False) for x in hs]))
    if not atz :
      _adjustTips(mn, trees[0])
    
  return (mn,md) if summaryType=="both" else mn if summaryType == "mean" else md
Exemple #4
0
def drawTree(tree, nid = None, cladesDict = None, positioning = None,
             fill = None, generalPlotAttributes = None, splitPoints = False,
             keepAux = False) :

  if fill is None and generalPlotAttributes is None :
    generalPlotAttributes = dict()

  if fill is not None and 'ec' not in fill :
    fill['ec'] = 'none'
    
  if generalPlotAttributes is not None and 'color' not in generalPlotAttributes :
    generalPlotAttributes['color'] = 'blue'
    
  if nid is None :
    nid = tree.root
    
  if positioning is not None :
    h = _drawTree(tree, nid, cladesDict, positioning,
                  fill, generalPlotAttributes, splitPoints, keepAux) 
  else :
    nh = nodeHeights(tree, allTipsZero = True)
    rl = _setLeftRight(tree, tree.root, nh)
    xroot = (rl.right + rl.left)/2
  
    h = _drawTreeTopDown(tree, nid, xroot,
                         fill, nh, generalPlotAttributes, splitPoints, keepAux) 
  return h
def simulateGeneTree(sTree) :
  """ Simulate one gene tree under species (spp) tree C{sTree}.

  Return a pair of tree and root height.
"""

  nh = nodeHeights(sTree)

  simTree = TreeBuilder()
  t,rootHeight = _simulateGeneTreeForNode(sTree, sTree.root, simTree, nh)[0]
  t = simTree.finalize(t)
  return (t,rootHeight)
 def __init__(self, tree) :
   self.tree = tree
   self.nhts = nodeHeights(tree)
   assert all([isinstance(tree.node(n).data.demographic,
                         (demographic.StepFunctionPopulation,
                          demographic.ConstantPopulation,
                          demographic.LinearPiecewisePopulation))
               for n in tree.all_ids()])
   
   nlp = sum([isinstance(tree.node(n).data.demographic,demographic.LinearPiecewisePopulation)
              for n in tree.all_ids()])
   assert nlp == 0 or nlp == len(tree.all_ids())
   self.isStepDemographic = nlp == 0
Exemple #7
0
def _collectCladeTaxaNonATZ(tree, taxa, partitions) :
  nhs = nodeHeights(tree, allTipsZero = False)
  for n in getPostOrder(tree):
    data = n.data
    if not n.succ:
      data.clade = [taxa.index(data.taxon),]
    else :
      p = []
      for s in n.succ :
        d = tree.node(s).data
        p.extend(d.clade)
        del d.clade
      data.clade = p
      
    partitions[frozenset(data.clade)] = (n.id, nhs[n.id])
  return nhs[tree.root]
  def setIMrates(stree, pim = 0.05, spr = 0.15, bdGrowth = None,
                 restrictToTree = True) :
    # growth rate = lambda - mu
    # Distribution of times from split until complete separation
    if bdGrowth is not None :
      mm = spr*(0.5/bdGrowth)
    else :
      # Crude: take mean from tree 
      mm = mean([stree.node(n).data.branchlength
                 for n in stree.all_ids() if n != stree.root])

    e1 = randomDistributions.LogNormal(mm, .25)

    nh = nodeHeights(stree)

    # internals, leaves to root order
    internals = set(stree.all_ids()) - set(stree.get_terminals())
    internals = [z for y,z in sorted([(nh[x], x) for x in internals])]

    for x in internals :
      n = stree.node(x)
      h = nh[x]
      tOrig = t = e1.sample()
      if restrictToTree:
        # Clip migration "stop" times if they go beyond stop time of children 
        for ch in n.succ:
          nch = stree.node(ch)
          if not nch.data.taxon:
            assert nh[n.id] >= nh[nch.id]

            bound = nh[ch] - nch.data.imc
            if h - t < bound:
              t = h - bound

      if h > t :
        d = demographic.LinearPiecewisePopulation([0, 0, pim], [h-t, h])
        n.data.imc = t
      else :
        if h == t :
          assert tOrig > h
          t = tOrig

        d = demographic.LinearPiecewisePopulation([(1 - h/t)*pim , pim], [h])
        n.data.imc = h

      n.data.ima = (d, d)
Exemple #9
0
def summaryTreeUsingCA(tree, xtrees, atz = False) :
  tree = copy.deepcopy(tree)
  
  sClades = getTreeClades(tree)
  # Target clades in tree to set height of
  cladeSets = [frozenset(c) for c,n in sClades]
  #stats = [[0.0,0.0] for c in cladeSets]
  stats = [[0.0] for c in cladeSets]
  NS = 0

  for t in xtrees:
    nhs = nodeHeights(t, allTipsZero = atz)
    # Store height estimate from tree per target clade 
    h = [0.0]*len(cladeSets)
    # We depend on those being in pre order
    for c,n in getTreeClades(t) :
      c = frozenset(c)
      for k,x in enumerate(cladeSets) :
        if x.issubset(c) :
          h[k] = nhs[n.id]

    NS += 1
    for st,hk in zip(stats,h) :
      st[0] += hk
      #st[1] += hk**2

  for (c,n),s in zip(sClades,stats) :
    n.data.hh = s[0]/NS

  # use t, nhs from last iteration
  for tx in tree.get_terminals():
    if atz :
      h1 = 0.0
    else :
      n2 = t.search_taxon(tree.node(tx).data.taxon)
      h1 = nhs[n2]
    tree.node(tx).data.hh = h1

  for nid in tree.all_ids() :
    if nid != tree.root :
      n = tree.node(nid)
      ph = tree.node(n.prev).data.hh
      h = n.data.hh
      assert ph >= h
      n.data.branchlength = ph - h
  return tree
def setIMrates(stree, mSpec, sSpec, balanced = None, restrictToTree = True) :
  nh = nodeHeights(stree)
  
  # internals, leaves to root order
  internals = set(stree.all_ids()) - set(stree.get_terminals())
  internals = [z for y,z in sorted([(nh[x], x) for x in internals])]

  for x in internals :
    n = stree.node(x)
    pim = mSpec.sample()
    
    if sSpec is not None:
      h = nh[x]
      tOrig = t = sSpec.sample()
      if restrictToTree:
        # Clip migration "stop" times if they go beyond stop time of children 
        for ch in n.succ:
          nch = stree.node(ch)
          if not nch.data.taxon:
            assert nh[n.id] >= nh[nch.id]

            bound = nh[ch] - nch.data.imc
            if h - t < bound:
              t = h - bound

      if h > t :
        d = demographic.LinearPiecewisePopulation([0, 0, pim], [h-t, h])
        n.data.imc = t
      else :
        if h == t :
          assert tOrig > h
          t = tOrig

        d = demographic.LinearPiecewisePopulation([(1 - h/t)*pim , pim], [h])
        n.data.imc = h

      n.data.ima = (d, d)
    else: # sSpec is None
      d = demographic.ConstantPopulation(pim)
      if balanced :
        n.data.ima = (d, d)
      else :
        d1 = demographic.ConstantPopulation(mSpec.sample())
        n.data.ima = (d, d1)
Exemple #11
0
def _setTreeHeights(tree, opts,fctr) :
  order = getPostOrder(tree)
  nhs = nodeHeights(tree, allTipsZero = False)

  for node in order :
    if not node.succ:
      node.data.height = nhs[node.id]*fctr
    else :
      hs = [tree.node(x).data.height for x in node.succ]
      mn = sum([h + opts[x] for x,h in zip(node.succ,hs)])/len(hs)
      node.data.height = max(*(hs + [mn]))

  for n in tree.all_ids() :
    node = tree.node(n)
    if node.prev is not None:
      p = tree.node(node.prev) 
      node.data.branchlength = p.data.height - node.data.height
      assert node.data.branchlength >= 0

  return tree
Exemple #12
0
def allPartitions(referenceTree, trees, func = None, withHeights = False,
                  withRoot = False) :
  """ Clade information summary for a set of trees.

  Summerize clades from all trees in one mapping. All trees must be on the
  same taxa as the reference tree. Return a mapping whose key is the clade, and
  the value is a sequence of (tree,node) pairs. If func is given, the values are
  the results of applying func to the (tree,node) pair. The clade is a (frozen)
  set of integers, each integer is the index of the taxon in the reference tree.
  """

  if withRoot :
    rootHeights = []
  taxa = referenceTree.get_taxa()
  ultrametric = True
  if withHeights :
    nhs = nodeHeights(referenceTree, allTipsZero = False)
    nhsd = [(referenceTree.node(i).data.taxon, nhs[i])
            for i in nhs if not referenceTree.node(i).succ]
    ultrametric = all([h <= 1e-13 for t,h in nhsd])
    
  p = dict()
  for tree in trees:
    p1 = dict()
    if ultrametric :
      h = _collectCladeTaxa(tree, tree.root, taxa, p1, withHeights)
    else :
      h = _collectCladeTaxaNonATZ(tree, taxa, p1)
    for k,nd in p1.iteritems() :
      pk = p.get(k)
      v = (tree, nd)
      if func :
        v = func(*v)
      if pk is None :
        p[k] = [v]
      else :
        pk.append(v)
    if withRoot :
      rootHeights.append(h)
      
  return (p,rootHeights) if withRoot else p
Exemple #13
0
def mauCanonical(tree, internalNodes = True) :
  """ Convert tree to Mau representation.

  Result is a tuple containing two lists [taxa-names, internal-nodes-heights].
  if 'internalNodes' the tuple contains a third list containing the node id of
  each internal node and a boolean indication if the childrens have been swaped
  of not. 

  >>> mauCanonical(Trees.Tree('((chimp:1,human:1):1,gorilla:2)')) in \
            [[['gorilla', 'chimp', 'human'], [2.0, 1.0]], \
            [['chimp', 'human', 'gorilla'], [1.0, 2.0]], \
            [['human', 'chimp', 'gorilla'], [1.0, 2.0]]]
  True

  @param tree:
  @type tree:  ITrees.Tree
  @param internalNodes: when True, return low level information about the
  location of internal nodes and if their siblings has been swapped.
"""

  nh = nodeHeights(tree)
  return _mauCanonicalSub(tree, tree.node(tree.root), nh, internalNodes)
Exemple #14
0
def _setTreeHeightsForTargets(tree, ftargets, fctr) :
  for i,h in ftargets() :
    tree.node(i).data.height = h

  nhs = nodeHeights(tree, allTipsZero = False)

  order = getPostOrder(tree)
  for node in order :
    if not node.succ:
      node.data.height = nhs[node.id]*fctr
    else :
      node.data.height = max([node.data.height]+
                             [tree.node(x).data.height for x in node.succ])

  for n in tree.all_ids() :
    node = tree.node(n)
    if node.prev is not None:
      p = tree.node(node.prev) 
      node.data.branchlength = p.data.height - node.data.height
      assert node.data.branchlength >= 0
  for i in tree.all_ids() :
    del tree.node(i).data.height
Exemple #15
0
def summaryTreeUsingMedianHeights(tree, xtrees) :
  tree = copy.deepcopy(tree)

  func = lambda t,(n,h) : h
  posteriorParts,rhs = allPartitions(tree, xtrees, func = func,
                                     withHeights = True, withRoot = True)
  treeParts = allPartitions(tree, [tree])

  for k in treeParts :
    # Node id
    nn = treeParts[k][0][1]
    
    if k in posteriorParts :
      tree.node(nn).data.height = median(posteriorParts[k])
    else :
      raise RuntimeError("tree incompatible with trees")

  # Assume all trees share same tip heights (not checked)
  nh = nodeHeights(xtrees[0])
  
  tree.node(tree.root).data.height = median(rhs)
  for n in getPostOrder(tree):
    if not len(n.succ) :
      n.data.height = nh[xtrees[0].search_taxon(n.data.taxon)]
    else :
      # Make sure node is heigher than descendants 
      n.data.height = max([n.data.height] + [tree.node(x).data.height for x in n.succ])

  for n in tree.all_ids() :
    node = tree.node(n)
    if node.prev is not None:
      p = tree.node(node.prev) 
      node.data.branchlength = p.data.height - node.data.height
      assert node.data.branchlength >= 0
        
  return tree
Exemple #16
0
def getGTorder(gtree, stree, nTries = 3, perTreeTries = 3, tryPairs=True) :
  """ get genes order to plot inside a species tree.

  preliminary version.
  """
  gtax = []
  gtx = defaultdict(lambda : [])
  for n in gtree.get_terminals() :
    gn = gtree.node(n)
    gtx[gn.data.snode.id].append(gn)
    gtax.append(gn)

  nh = nodeHeights(gtree)
  for x in gtree.all_ids() :
    gtree.node(x).data.ht = nh[x]
    
  ms, mp = _getGTorderFixedStree(gtree, stree, gtax, gtx, tryPairs)
  sint = [stree.node(n) for n in stree.all_ids() if stree.node(n).succ]
  for nk in range(nTries) :
    cont = True
    while cont :
      random.shuffle(sint)
      cont = False
      for n in sint :
        for ll in range(perTreeTries) :
          sc = n.succ
          n.succ = [sc[1],sc[0]]
          tms, tmp = _getGTorderFixedStree(gtree, stree, gtax, gtx, tryPairs)
          if tms < ms :
            ms, mp = tms, tmp
            cont = True
          else :
            n.succ = sc
  for g,o in zip(gtax,mp) :
    g.data.o = o
  return ms, mp, gtx
Exemple #17
0
  ## if f(0) * f(1) < 0 :
  ##   sol = brentq(f, 0, 1)
  ## else :
  ##   sol = thc/2
  return sol/3
  
  
if 0:
  k = len(seqs)//nMax
  if max(k,ns) > len(seqs)//50 :
    return thc/2
  sq = random.sample(seqs, max(k,ns))
  t,ds = treeFromSeqs(sq, matchScores = scores)
  del ds
  th = sorted(nodeHeights(t).values())[-(ns//k)]
  #import pdb; pdb.set_trace()
  return th
  
  if matches is None :
    #print "matches"
    matches = _buildLookupC(seqs)
  #print "done matches"
  # lseqs = [len(x) for x in seqs]
  fdis = lambda s,j : calign.globalAlign(s, seqs[j], scores = scores,
                                         report = calign.JCcorrection)

  nInClade = max((len(seqs)//nMax) + 1, nMax)
  lim = 2*nInClade
  v = []
  li = random.sample(range(len(seqs)), min(ns,len(seqs)))
Exemple #18
0
  def guesstimateTH(seqs, nMax, thc, matches = None, scores = None, ns = 100) :
    d = [[calign.globalAlign(x1,x2, report = calign.JCcorrection, scores = scores) for (x1,x2) in
        [random.sample(seqs, 2)]][0] for k in range(2000)]
    q = 1- 1./(len(seqs)/nMax)
    p = ([int(nMax * q**n) for n in range(0,100)])
    th = sum([nPairs(x) for x in p])/nPairs(sum(p))/2
    f = lambda t : (sum([x < t for x in d])/len(d)) - th
    #import pdb; pdb.set_trace()

    if f(0) * f(1) < 0 :
      sol = brentq(f, 0, 1)
    else :
      sol = thc/2
    return sol



    k = len(seqs)//nMax
    if max(k,ns) > len(seqs)//50 :
      return thc/2
    sq = random.sample(seqs, max(k,ns))
    t,ds = treeFromSeqs(sq, matchScores = scores)
    del ds
    th = sorted(nodeHeights(t).values())[-(ns//k)]
    #import pdb; pdb.set_trace()
    return th

    if matches is None :
      #print "matches"
      matches = _buildLookupC(seqs)
    #print "done matches"
    # lseqs = [len(x) for x in seqs]
    fdis = lambda s,j : calign.globalAlign(s, seqs[j], scores = scores,
                                           report = calign.JCcorrection)

    nInClade = max((len(seqs)//nMax) + 1, nMax)
    lim = 2*nInClade
    v = []
    li = random.sample(range(len(seqs)), min(ns,len(seqs)))
    for i in li:
      p = getMates(seqs[i], seqs, .3, fdis, matches, lim = lim)
      v.append((i,sorted(p[1])))    


    f3 = lambda x : mean(x) if len(x) else 1
    f1 = lambda th : f3([1./x for x in [sum([x < th for x in u[1]]) for u in v] if x > 0])
    #import pdb; pdb.set_trace()
    #f1 = lambda th : mean([1/max(sum([x < th for x in u[1]]),0.0001) for u in v])
    if f1(1) >= 1./nInClade :
      f = lambda x : f1(1) * 1.01 - f1(x) 
    else :
      f = lambda x : f1(x) - 1./nInClade

    assert f(0) * f(1) < 0
    sol = brentq(f, 0, 1)

    f2 = lambda th : 1 - (sum([sum([x < th for x in u[1]]) for u in v])/sum([len(u[1]) for u in v]))
    f = lambda x : f2(x) - 1./nInClade
    #import pdb; pdb.set_trace()
    assert f(0) * f(1) <= 0
    sol1 = brentq(f, 0, 1)

    th = max(sol,sol1)
    th = int(th*1000+.5)/1000
    return th,matches
Exemple #19
0
  def minPosteriorHSDistanceTree(tree, trees, limit = scipy.inf, norm = True,
                                 nodesMinHeight = None, withDerivative = False,
                                 withInit = True, factr=10000000.0,
                                 warnings = True) :
    """ Find a branch length assignment for tree which minimizes the total
    distance to the set of trees.

    limit is an upper bound (presumably from a prior call here with another tree).
    If the distance is known to be larger, the optimization for this tree can be
    skipped.
    """

    #assert not withDerivative
    # not correct for tip/node lower bounds
    assert nodesMinHeight is None

    treeParts = allPartitions(tree, [tree])

    posteriorParts = allPartitions(tree, trees,
                                   func = lambda t,(n,h) : (h, t.node(n).data.branchlength),
                                   withHeights = True)

    # For numerical stability sake in computing gradients, scale trees
    # so that mean root height is 1 
    fctr = len(trees)/ sum([treeHeight(x) for x in trees]) if norm else 1
    if verbose: print fctr

    # Text of expression to compute the total distance. The variables are the
    # branch lengths. 
    ee = ""
    dee = ""
    pee = ""

    for r,k in enumerate(treeParts) :
      nn = treeParts[k][0][1]
      if k in posteriorParts :
        # A tree clade which is in some posterior trees

        # Branchs from posterior for this clade
        br = [(h*fctr,b*fctr) for h, b in posteriorParts[k]]

        # Number of posterior trees without the clade 
        a1 = (len(trees) - len(posteriorParts[k]))

        assert len(trees) == a1 + len(br)

        if not tree.node(nn).data.taxon  :

          if withDerivative :
            pee += "  ab%d,abd%d = _absDiffBranchDer(b%d,%s)\n" % (nn,nn,nn,_prepare(br))
            pee += "  abd%d += %d\n" % (nn,a1)

            ee += "+ ab%d" % (nn,)
          else :
            ee += "+ _absDiffBranch(bs%d,%s)" % (nn,_prepare([x[0] for x in br]))

          ee += "+ %d * b%d" % (a1,nn)

          if withDerivative:
            dee += "+(abd%d * d_b%d_x[k])" % (nn,nn)        

      else :
        # A tree clade not appearing in posterior: contributes the full branch
        # length for each posterior tree.

        ee += "+(%d * b%d)" % (len(trees), nn)

        if withDerivative:
          dee += "+(%d * d_b%d_x[k])" % (len(trees), nn)

    # Constant term of total distance (independent from branch lengths) 
    c0 = 0

    for k in posteriorParts :
      if k not in treeParts:
        c0 += sum([b * fctr for b in posteriorParts[k]])      

    # Total distance of branches terminating at a clade which is missing in tree.
    # This is (not necessarily good) lower bound on the total distance.
    z0 = c0

    del posteriorParts

    # Tuck in the constant
    ee = ("%.15g " % c0) + ee

    if z0 >= limit :
      return (None, 0.0)

    # Get code which transforms the heights encoding to branch lengths
    # A descendant height is specified as a fraction in [0,1] of its ancestor
    # height (but leading number is the root height).
    ba,minRoot,htox = _treeBranchAssignmentExprs(tree, treeParts, fctr,
                                                 nodesMinHeight = nodesMinHeight,
                                                 withDerivative = withDerivative,
                                                 withInit = True,
                                                 withHeights = True)

    # Define the posterior distance function on the fly.
    cod = ("def v1score(x):\n  " + "\n  ".join(ba) + "\n" + pee + "\n  return " +
           (('(' + ee + ", array([(" + dee + ") for k in range(nDer)]) )")
            if withDerivative else ee))
    exec cod
    #v1score = v1score1
    if verbose: print cod

    # Number of variables (heights)
    nx = len(tree.get_terminals())-1

    xcod = "def htox():\n  x = [0]*%d\n  " % nx + "\n  ".join(htox) \
           + "\n  return x"
    exec xcod

    #global code2branches
    # Function to get the branch lengths from optimized heights
    codb = "def code2branches(x):\n  " + "\n  ".join(ba) + "\n  " + \
         "return (" + ",".join(['(%d,b%d)' % ((treeParts[k][0][1],)*2) for k in treeParts]) + ")" 
    exec codb in globals()
    if verbose: print cod
    #code2branches = code2branchesa
    if verbose :
      print "@@",nx, minRoot, treeHeight(tree) * fctr
      print cod

    if 0 :
      cod8 = "def tv1score(tree):\n"
      for r,k in enumerate(treeParts) :
        cod8 += "  b%d = tree.node(%d).data.branchlength\n" % ((treeParts[k][0][1],)*2)
      cod8 += "  return " +  ee
      exec cod8

      nhs = nodeHeights(tree, allTipsZero = False)

      cod9 = "def tv1scoreh(hs):\n"
      hs = _getNodeIDsDescendingHeight(tree, tree.root, 0)
      for b in _getNodeIDsDescendingHeight(tree, tree.root, 1)[1:] :
        nd = tree.node(b)
        if not nd.succ:
          nh = "%.15g" % nhs[b]
        else :
          nh = "hs[%d]" % hs.index(b)
        cod9 += "  b%d = hs[%d] - %s\n" % (b, hs.index(tree.node(b).prev), nh)
      cod9 += "  return " +  ee
      exec cod9

    #ssx = copy.deepcopy(tree)
    #global xtrees
    #xtrees = trees
    #exec """def v1scorex(zz0) : return v1score_ck(v1score, zz0, totr(zz0), xtrees)"""

    maxfun = 15000
    if 1 :
      # small protection against disasters
      while True:
        if withInit :
          x0 = htox()
          if norm:
            x0[0] = 1
        else :
          x0 = [1 if norm else treeHeight(tree)] + \
               [random.random() for k in range(nx-1)]

        initialVal = v1score(x0)
        assert x0[0] >= minRoot
        #pdb.set_trace()
        #global mcalls, dcalls
        #mcalls, dcalls = 0,0

        zz = scipy.optimize.fmin_l_bfgs_b(v1score, x0,
                                          approx_grad=0 if withDerivative else 1,
                                          bounds = [[minRoot,None]] + [[0,1]]*(nx-1),
                                          factr = factr,
                                          iprint=-1, maxfun=maxfun)
        if warnings and zz[2]['warnflag'] != 0 :
          print "WARNING:", zz[2]['task']

        finaleVal = v1score(zz[0])
        if finaleVal < initialVal :
          break
        withInit = False
        factr /= 10
        if factr < 1e6 :
          # failed, leave as is
          zz = htox()
          finaleVal = v1score(zz[0])
    else :
      zz = scipy.optimize.fmin_tnc(v1score,
                                   [treeHeight(tree)*fctr] +
                                   [random.uniform(.8,.9) for k in range(nx-1)],
                                   #[.8 for k in range(nx-1)],
                                   approx_grad=1,
                                   bounds = [[minRoot,None]] + [[0,1]]*(nx-1),
                                   maxfun=maxfun,
                                   messages=0)
      assert zz[2] == 1


    # Do not change tree passed as argument. Copy tree and set branch lengths of
    # the copy.
    ss = copy.deepcopy(tree)

    brs = code2branches(zz[0])
    for nn,br in brs:
      ss.node(nn).data.branchlength = br/fctr
    ## for r,k in enumerate(treeParts) :
    ##   ss.node(treeParts[k][0][1]).data.branchlength = brs[r]/fctr

    val = finaleVal
    if withDerivative :
      val = val[0]
    return (ss, val/fctr if norm else val)
Exemple #20
0
def _treeBranchAssignmentExprs(tree, clades, fctr, nodesMinHeight = None,
                               withDerivative = False, withInit = False,
                               withHeights = False, paranoid = False) :
  """ nodesMinHeight: minimum height (lower bound) for internal nodes
  paranoid: add internal consistency checks
  """
  # tree should be scaled by fctr already
  
  allid = set(tree.all_ids())
  # taxa
  terms = set(tree.get_terminals())
  # internal nodes
  allint = allid - terms

  # Works for dated tips as well
  nh = nodeHeights(tree, allTipsZero = False)
  # Node before its descendants
  nInOrder = getPreOrder(tree, includeTaxa=False)
  # Reversed, child before parent
  nhInOrder = [(nh[x],x) for x in reversed(nInOrder)]

  # Mapping (per node) of minimum height of node, which is the max among all of
  # its descendants
  mh = dict()
  for n in terms:
    mh[n] = nh[n]
  for h,n in nhInOrder:
    mh[n] = max([mh[c] for c in tree.node(n).succ])

  if nodesMinHeight is not None :
    for n in nodesMinHeight:
      mh[n] = max(mh[n], nodesMinHeight[n]*fctr)

  #if fctr != 1 :
  #  for n in mh :
  #    mh[n] = mh[n] * fctr
    
  # x[0] is root
  if withInit :
    htox = []
  
  sr = []
  if paranoid:
    # solver can send values out of range
    sr.append("x = [max(x[0],%f)] + [min(max(z,0),1.0) for z in x[1:]]" % mh[tree.root])
  sr.append("h%d = x[0]" % nInOrder[0])
  if withInit:
    htox.append("x[0] = %.15g" % nh[nInOrder[0]])

  if withDerivative:
    sr.append("d_h%d_x = [1] + [0]*%d" % (nInOrder[0],len(nInOrder)-1))
    sr.append("nDer = %d" % len(nInOrder))
    
  for i,k in enumerate(nInOrder[1:]):
    h = tree.node(k).prev
    if mh[k] != 0 :
      m = "%.15g" % mh[k]
      sr.append("h%d = x[%d] * (h%d - %s) + %s" % (k, i+1, h, m, m))
      if withInit:
        htox.append("x[%d] = %.15g" % (i+1, hs2ratio(nh[k], nh[h], mh[k])))
    else :
      sr.append("h%d = x[%d] * h%d" % (k, i+1, h))
      if withInit:
        htox.append("x[%d] = %.15g" % (i+1, hs2ratio(nh[k], nh[h], 0)))
      
    if withDerivative:
      sr.append("d_h%d_x = [%s]" % (k,der(i+1, len(nInOrder), h)))
      if mh[k] != 0 :
        sr.append("d_h%d_x[%d] -= %s" % (k,i+1,m))
        
    if paranoid:
      sr.append("assert h%d >= 0" % k)
    
  for r,k in enumerate(clades) :
    n = clades[k][0][1]                                ; assert n != tree.root
    p = tree.node(n).prev
    if n in terms:
      if mh[n] != 0 :
        sr.append("b%d=(h%d - %.15g) # %d" % (n, p, mh[n], n))
        if withHeights: sr.append("bs%d = %.15g" % (n, mh[n]))
      else :
        sr.append("b%d=(h%d) # %d" % (n, p, n)) 
        if withHeights: sr.append("bs%d = 0" % (n))
       
      if withDerivative:
        sr.append("d_b%d_x = d_h%d_x" % (n,p))
    else :
      sr.append("b%d=(h%d - h%d) # %d" % (n, p, n, n))
      if withHeights: sr.append("bs%d = h%d" % (n,n))
      
      if withDerivative:
        sr.append("d_b%d_x = [u-v for u,v in zip(d_h%d_x, d_h%d_x)]" % (n,p,n))
        
    if paranoid:
      sr.append("assert b%d >= 0, (%d,b%d,h%d,x)" % (n,r,r,p))

  if withInit:
    return sr, mh[tree.root], htox
  return sr, mh[tree.root]