def create_config(data): config = trf.Config(data) config.norm_config = 'linear' config.batch_size = 100 config.noise_factor = 1 config.noise_sampler = None # '2gram' config.data_factor = 1 config.data_sampler = config.noise_sampler # config.lr_feat = lr.LearningRateTime(1e-4) config.lr_net = lr.LearningRateTime(1e-3) #lr.LearningRateTime(1, 0.5, tc=1e3) config.lr_logz = lr.LearningRateTime(0.01) config.opt_feat_method = 'adam' config.opt_net_method = 'adam' config.opt_logz_method = 'adam' config.max_epoch = 1000 config.init_logz = config.get_initial_logz() config.init_global_logz = 0 # config.prior_model_path = 'lstm/lstm_e32_h32x1_BNCE_SGD/model.ckpt' # feat config # config.feat_config.feat_type_file = '../../tfcode/feat/g4.fs' # config.feat_config.feat_cluster = None config.feat_config = None # net config config.net_config.update(task.get_config_rnn(config.vocab_size)) # config.net_config.l2_reg = 1e-4 # wb.mkdir('word_emb') # config.net_config.load_embedding_path = 'word_emb/ptb_d{}.emb'.format(config.net_config.embedding_dim) config.write_dbg = False return config
def create_config(data): config = trf.Config(data) config.write_dbg = False config.max_epoch = 1000 config.batch_size = 100 config.noise_factor = 1 config.norm_config = 'multiple' config.init_logz = config.get_initial_logz() config.lr_feat = lr.LearningRateTime(1, 0.2, tc=1e3) config.lr_net = lr.LearningRateTime( 1, 1., tc=1e3) #lr.LearningRateTime(1, 0.5, tc=1e3) config.lr_logz = lr.LearningRateTime(1, 1., tc=1e3) config.opt_feat_method = 'adam' config.opt_net_method = 'adam' config.opt_logz_method = 'adam' # config.prior_model_path = 'lstm/lstm_e32_h32x1_BNCE_SGD/model.ckpt' # feat config # config.feat_config.feat_type_file = '../../tfcode/feat/g4.fs' # config.feat_config.feat_cluster = None config.feat_config = None # net config config.net_config.update(get_config_cnn(config.vocab_size)) config.write_dbg = True # for sampler config.sampler_config.learning_rate = 0.1 return config
def get_config(data): config = trf.Config(data) # config.pi_0 = data.get_pi0(config.pi_true) # config.pi_true = config.pi_0 config.norm_config = 'linear' config.batch_size = 100 config.noise_factor = 4 config.data_factor = 0 config.train_add_noise = False # config.noise_sampler = '2gram' # config.lr_feat = lr.LearningRateTime(1e-4) config.lr_net = lr.LearningRateTime(1e-3) # lr.LearningRateTime(1, 0.5, tc=1e3) config.lr_logz = lr.LearningRateTime(1e-2) config.lr_sampler = lr.LearningRateEpochDelay(0.1) config.opt_feat_method = 'adam' config.opt_net_method = 'adam' config.opt_logz_method = 'adam' config.max_epoch = 1000 # sampler # config.sampler_config.hidden_layers = 2 # config.load_sampler = 'sampler/lstm_e200_h200x2/sampler.ckpt' # config.fix_sampler = True config.init_logz = config.get_initial_logz() config.init_global_logz = 0 config.feat_config = None # net config config.net_config.update(get_config_rnn(config.vocab_size)) # config.net_config.l2_reg = 1e-4 # wb.mkdir('word_emb') # config.net_config.load_embedding_path = 'word_emb/ptb_d{}.emb'.format(config.net_config.embedding_dim) config.write_dbg = False config.add_sampler_as_prior = False return config