Exemple #1
0
def test_n_jobs_not_new_model():
    grid_config = {
        'sklearn.ensemble.AdaBoostClassifier': {
            'n_estimators': [10, 100, 1000]
        },
        'sklearn.ensemble.RandomForestClassifier': {
            'n_estimators': [10, 100],
            'max_features': ['sqrt', 'log2'],
            'max_depth': [5, 10, 15, 20],
            'criterion': ['gini', 'entropy'],
            'n_jobs': [12, 24],
        }
    }

    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=S3ModelStorageEngine('econ-dev/inspections'),
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )

            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            train_tasks = trainer.generate_train_tasks(
                grid_config,
                dict(),
                InMemoryMatrixStore(matrix, {
                    'label_timespan': '1d',
                    'end_time': datetime.datetime.now(),
                    'feature_start_time': datetime.date(2012, 12, 20),
                    'label_name': 'label',
                    'metta-uuid': '1234',
                    'feature_names': ['ft1', 'ft2'],
                    'indices': ['entity_id'],
                })
            )
            assert len(train_tasks) == 35 # 32+3, would be (32*2)+3 if we didn't remove
            assert len([
                task for task in train_tasks
                if 'n_jobs' in task['parameters']
            ]) == 32

            for train_task in train_tasks:
                trainer.process_train_task(**train_task)

            for row in engine.execute(
                'select model_parameters from results.model_groups'
            ):
                assert 'n_jobs' not in row[0]
Exemple #2
0
    def test_retry_recovery(self):
        db_engine = None
        trainer = None
        port = None
        with rig_engines() as (db_engine, project_storage):
            port = db_engine.url.port
            trainer = ModelTrainer(
                experiment_hash=None,
                model_storage_engine=project_storage.model_storage_engine(),
                db_engine=db_engine,
                model_grouper=ModelGrouper(),
            )
            matrix_store = get_matrix_store(project_storage)

        # start without a database server
        # then bring it back up after the first sleep
        # use self so it doesn't go out of scope too early and shut down
        self.new_server = None

        def replace_db(arg):
            self.new_server = testing.postgresql.Postgresql(port=port)
            db_engine = create_engine(self.new_server.url())
            ensure_db(db_engine)
            init_engine(db_engine)
            get_matrix_store(project_storage)

        with patch("time.sleep") as time_mock:
            time_mock.side_effect = replace_db
            try:
                trainer.train_models(grid_config(), dict(), matrix_store)
            finally:
                if self.new_server is not None:
                    self.new_server.stop()
            assert len(time_mock.mock_calls) == 1
def test_baseline_exception_handling(sample_matrix_store):
    grid_config = {
        'triage.component.catwalk.baselines.rankers.PercentileRankOneFeature':
        {
            'feature': ['feature_one', 'feature_three']
        }
    }
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        project_path = 'econ-dev/inspections'
        model_storage_engine = S3ModelStorageEngine(project_path)
        ensure_db(db_engine)
        init_engine(db_engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(project_path='econ-dev/inspections',
                                   experiment_hash=None,
                                   model_storage_engine=model_storage_engine,
                                   db_engine=db_engine,
                                   model_grouper=ModelGrouper())

            train_tasks = trainer.generate_train_tasks(grid_config, dict(),
                                                       sample_matrix_store)
            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

            model_ids = []
            for train_task in train_tasks:
                model_ids.append(trainer.process_train_task(**train_task))
            assert model_ids == [1, None]
def test_custom_groups(sample_matrix_store, grid_config):
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')

            MatrixFactory(matrix_uuid="1234")
            session.commit()
            # create training set
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(project_path)
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                model_grouper=ModelGrouper(['class_path']),
                db_engine=engine,
            )
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=sample_matrix_store)
            # expect only one model group now
            records = [
                row[0] for row in engine.execute(
                    'select distinct model_group_id from model_metadata.models'
                )
            ]
            assert len(records) == 1
            assert records[0] == model_ids[0]
    def test_retry_max(self):
        db_engine = None
        trainer = None
        # set up a basic model training run
        # TODO abstract the setup of a basic model training run where
        # we don't worry about the specific values used? it would make
        # tests like this require a bit less noise to read past
        with testing.postgresql.Postgresql() as postgresql:
            db_engine = create_engine(postgresql.url())
            ensure_db(db_engine)
            init_engine(db_engine)
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=InMemoryModelStorageEngine(
                    project_path=''),
                db_engine=db_engine,
                model_grouper=ModelGrouper())

        # the postgres server goes out of scope here and thus no longer exists
        with patch('time.sleep') as time_mock:
            with self.assertRaises(sqlalchemy.exc.OperationalError):
                trainer.train_models(grid_config(), dict(),
                                     sample_matrix_store())
            # we want to make sure that we are using the retrying module sanely
            # as opposed to matching the exact # of calls specified by the code
            assert len(time_mock.mock_calls) > 5
Exemple #6
0
def test_custom_groups(grid_config, db_engine_with_results_schema, project_storage):
    model_storage_engine = project_storage.model_storage_engine()
    experiment_hash = save_experiment_and_get_hash(
        config={'foo': 'bar'}, 
        db_engine=db_engine_with_results_schema
        )
    run_id = initialize_tracking_and_get_run_id(
        experiment_hash,
        experiment_class_path="",
        random_seed=5,
        experiment_kwargs={},
        db_engine=db_engine_with_results_schema
    )
    trainer = ModelTrainer(
        experiment_hash=experiment_hash,
        model_storage_engine=model_storage_engine,
        model_grouper=ModelGrouper(["class_path"]),
        db_engine=db_engine_with_results_schema,
        run_id=run_id,
    )
    # create training set
    model_ids = trainer.train_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )
    # expect only one model group now
    records = [
        row[0]
        for row in db_engine_with_results_schema.execute(
            "select distinct model_group_id from triage_metadata.models"
        )
    ]
    assert len(records) == 1
    assert records[0] == model_ids[0]
Exemple #7
0
    def test_retry_recovery(self):
        grid_config = {
            'sklearn.ensemble.AdaBoostClassifier': {
                'n_estimators': [10]
            },
        }

        engine = None
        trainer = None
        port = None
        with testing.postgresql.Postgresql() as postgresql:
            port = postgresql.settings['port']
            engine = create_engine(postgresql.url())
            ensure_db(engine)
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=InMemoryModelStorageEngine(project_path=''),
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )

            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            matrix_store = InMemoryMatrixStore(matrix, {
                'label_timespan': '1d',
                'end_time': datetime.datetime.now(),
                'feature_start_time': datetime.date(2012, 12, 20),
                'label_name': 'label',
                'metta-uuid': '1234',
                'feature_names': ['ft1', 'ft2'],
                'indices': ['entity_id'],
            })

        # start without a database server
        # then bring it back up after the first sleep
        # use self so it doesn't go out of scope too early and shut down
        self.new_server = None
        def replace_db(arg):
            self.new_server = testing.postgresql.Postgresql(port=port)
            engine = create_engine(self.new_server.url())
            ensure_db(engine)
        with patch('time.sleep') as time_mock:
            time_mock.side_effect = replace_db
            try:
                trainer.train_models(grid_config, dict(), matrix_store)
            finally:
                if self.new_server is not None:
                    self.new_server.stop()
            assert len(time_mock.mock_calls) == 1
Exemple #8
0
def test_n_jobs_not_new_model(sample_matrix_store):
    grid_config = {
        'sklearn.ensemble.AdaBoostClassifier': {
            'n_estimators': [10, 100, 1000]
        },
        'sklearn.ensemble.RandomForestClassifier': {
            'n_estimators': [10, 100],
            'max_features': ['sqrt', 'log2'],
            'max_depth': [5, 10, 15, 20],
            'criterion': ['gini', 'entropy'],
            'n_jobs': [12, 24],
        }
    }

    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(project_path='econ-dev/inspections',
                                   experiment_hash=None,
                                   model_storage_engine=S3ModelStorageEngine(
                                       'econ-dev/inspections'),
                                   db_engine=db_engine,
                                   model_grouper=ModelGrouper())

            train_tasks = trainer.generate_train_tasks(
                grid_config,
                dict(),
                sample_matrix_store,
            )
            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

            assert len(train_tasks
                       ) == 35  # 32+3, would be (32*2)+3 if we didn't remove
            assert len([
                task for task in train_tasks if 'n_jobs' in task['parameters']
            ]) == 32

            for train_task in train_tasks:
                trainer.process_train_task(**train_task)

            for row in db_engine.execute(
                    'select model_parameters from model_metadata.model_groups'
            ):
                assert 'n_jobs' not in row[0]
Exemple #9
0
    def test_retry_max(self):
        grid_config = {
            'sklearn.ensemble.AdaBoostClassifier': {
                'n_estimators': [10]
            },
        }

        engine = None
        trainer = None
        # set up a basic model training run
        # TODO abstract the setup of a basic model training run where
        # we don't worry about the specific values used? it would make
        # tests like this require a bit less noise to read past
        with testing.postgresql.Postgresql() as postgresql:
            engine = create_engine(postgresql.url())
            ensure_db(engine)
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=InMemoryModelStorageEngine(project_path=''),
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )

            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            matrix_store = InMemoryMatrixStore(matrix, {
                'label_timespan': '1d',
                'end_time': datetime.datetime.now(),
                'feature_start_time': datetime.date(2012, 12, 20),
                'label_name': 'label',
                'metta-uuid': '1234',
                'feature_names': ['ft1', 'ft2'],
                'indices': ['entity_id'],
            })
        # the postgres server goes out of scope here and thus no longer exists
        with patch('time.sleep') as time_mock:
            with self.assertRaises(sqlalchemy.exc.OperationalError):
                trainer.train_models(grid_config, dict(), matrix_store)
            # we want to make sure that we are using the retrying module sanely
            # as opposed to matching the exact # of calls specified by the code
            assert len(time_mock.mock_calls) > 5
Exemple #10
0
def test_baseline_exception_handling():
    grid_config = {
        'triage.component.catwalk.baselines.rankers.PercentileRankOneFeature': {
            'feature': ['feature_one', 'feature_three']
        }
    }
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        project_path = 'econ-dev/inspections'
        model_storage_engine = S3ModelStorageEngine(project_path)
        ensure_db(engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine = model_storage_engine,
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )

            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            train_tasks = trainer.generate_train_tasks(
                grid_config,
                dict(),
                InMemoryMatrixStore(matrix, {
                    'label_timespan': '1d',
                    'end_time': datetime.datetime.now(),
                    'feature_start_time': datetime.date(2012, 12, 20),
                    'label_name': 'label',
                    'metta-uuid': '1234',
                    'feature_names': ['ft1', 'ft2'],
                    'indices': ['entity_id'],
                })
            )
            model_ids = []
            for train_task in train_tasks:
                model_ids.append(trainer.process_train_task(**train_task))
            assert model_ids == [1, None]
Exemple #11
0
def default_model_trainer(db_engine_with_results_schema, project_storage):
    model_storage_engine = project_storage.model_storage_engine()
    trainer = ModelTrainer(
        experiment_hash=None,
        model_storage_engine=model_storage_engine,
        db_engine=db_engine_with_results_schema,
        model_grouper=ModelGrouper(),
    )
    yield trainer
Exemple #12
0
    def test_retry_max(self):
        db_engine = None
        trainer = None
        # set up a basic model training run
        with rig_engines() as (db_engine, project_storage):
            trainer = ModelTrainer(
                experiment_hash=None,
                model_storage_engine=project_storage.model_storage_engine(),
                db_engine=db_engine,
                model_grouper=ModelGrouper())
            matrix_store = get_matrix_store(project_storage)

        # the postgres server goes out of scope here and thus no longer exists
        with patch('time.sleep') as time_mock:
            with self.assertRaises(sqlalchemy.exc.OperationalError):
                trainer.train_models(grid_config(), dict(), matrix_store)
            # we want to make sure that we are using the retrying module sanely
            # as opposed to matching the exact # of calls specified by the code
            assert len(time_mock.mock_calls) > 5
    def test_retry_recovery(self):
        db_engine = None
        trainer = None
        port = None
        with testing.postgresql.Postgresql() as postgresql:
            port = postgresql.settings['port']
            db_engine = create_engine(postgresql.url())
            ensure_db(db_engine)
            init_engine(db_engine)
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=InMemoryModelStorageEngine(
                    project_path=''),
                db_engine=db_engine,
                model_grouper=ModelGrouper())

        # start without a database server
        # then bring it back up after the first sleep
        # use self so it doesn't go out of scope too early and shut down
        self.new_server = None

        def replace_db(arg):
            self.new_server = testing.postgresql.Postgresql(port=port)
            db_engine = create_engine(self.new_server.url())
            ensure_db(db_engine)
            init_engine(db_engine)

            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

        with patch('time.sleep') as time_mock:
            time_mock.side_effect = replace_db
            try:
                trainer.train_models(grid_config(), dict(),
                                     sample_matrix_store())
            finally:
                if self.new_server is not None:
                    self.new_server.stop()
            assert len(time_mock.mock_calls) == 1
Exemple #14
0
def test_custom_groups(grid_config):
    with rig_engines() as (db_engine, project_storage):
        # create training set
        model_storage_engine = project_storage.model_storage_engine()
        trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=model_storage_engine,
            model_grouper=ModelGrouper(['class_path']),
            db_engine=db_engine,
        )
        model_ids = trainer.train_models(
            grid_config=grid_config,
            misc_db_parameters=dict(),
            matrix_store=get_matrix_store(project_storage))
        # expect only one model group now
        records = [
            row[0] for row in db_engine.execute(
                'select distinct model_group_id from model_metadata.models')
        ]
        assert len(records) == 1
        assert records[0] == model_ids[0]
Exemple #15
0
def test_baseline_exception_handling():
    grid_config = {
        'triage.component.catwalk.baselines.rankers.PercentileRankOneFeature':
        {
            'feature': ['feature_one', 'feature_three']
        }
    }
    with rig_engines() as (db_engine, project_storage):
        trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=project_storage.model_storage_engine(),
            db_engine=db_engine,
            model_grouper=ModelGrouper())

        train_tasks = trainer.generate_train_tasks(
            grid_config, dict(), get_matrix_store(project_storage))

        model_ids = []
        for train_task in train_tasks:
            model_ids.append(trainer.process_train_task(**train_task))
        assert model_ids == [1, None]
Exemple #16
0
def test_n_jobs_not_new_model():
    grid_config = {
        'sklearn.ensemble.AdaBoostClassifier': {
            'n_estimators': [10, 100, 1000]
        },
        'sklearn.ensemble.RandomForestClassifier': {
            'n_estimators': [10, 100],
            'max_features': ['sqrt', 'log2'],
            'max_depth': [5, 10, 15, 20],
            'criterion': ['gini', 'entropy'],
            'n_jobs': [12, 24],
        }
    }

    with rig_engines() as (db_engine, project_storage):
        model_storage_engine = project_storage.model_storage_engine()
        trainer = ModelTrainer(experiment_hash=None,
                               model_storage_engine=model_storage_engine,
                               db_engine=db_engine,
                               model_grouper=ModelGrouper())

        train_tasks = trainer.generate_train_tasks(
            grid_config,
            dict(),
            get_matrix_store(project_storage),
        )

        assert len(
            train_tasks) == 35  # 32+3, would be (32*2)+3 if we didn't remove
        assert len([
            task for task in train_tasks if 'n_jobs' in task['parameters']
        ]) == 32

        for train_task in train_tasks:
            trainer.process_train_task(**train_task)

        for row in db_engine.execute(
                'select hyperparameters from model_metadata.model_groups'):
            assert 'n_jobs' not in row[0]
Exemple #17
0
def test_custom_groups(grid_config, db_engine_with_results_schema,
                       project_storage):
    model_storage_engine = project_storage.model_storage_engine()
    trainer = ModelTrainer(
        experiment_hash=None,
        model_storage_engine=model_storage_engine,
        model_grouper=ModelGrouper(["class_path"]),
        db_engine=db_engine_with_results_schema,
    )
    # create training set
    model_ids = trainer.train_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )
    # expect only one model group now
    records = [
        row[0] for row in db_engine_with_results_schema.execute(
            "select distinct model_group_id from triage_metadata.models")
    ]
    assert len(records) == 1
    assert records[0] == model_ids[0]
Exemple #18
0
def test_n_jobs_not_new_model():
    grid_config = {
        "sklearn.ensemble.AdaBoostClassifier": {
            "n_estimators": [10, 100, 1000]
        },
        "sklearn.ensemble.RandomForestClassifier": {
            "n_estimators": [10, 100],
            "max_features": ["sqrt", "log2"],
            "max_depth": [5, 10, 15, 20],
            "criterion": ["gini", "entropy"],
            "n_jobs": [12, 24],
        },
    }

    with rig_engines() as (db_engine, project_storage):
        model_storage_engine = project_storage.model_storage_engine()
        trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=model_storage_engine,
            db_engine=db_engine,
            model_grouper=ModelGrouper(),
        )

        train_tasks = trainer.generate_train_tasks(
            grid_config, dict(), get_matrix_store(project_storage))

        assert len(
            train_tasks) == 35  # 32+3, would be (32*2)+3 if we didn't remove
        assert (len([
            task for task in train_tasks if "n_jobs" in task["parameters"]
        ]) == 32)

        for train_task in train_tasks:
            trainer.process_train_task(**train_task)

        for row in db_engine.execute(
                "select hyperparameters from model_metadata.model_groups"):
            assert "n_jobs" not in row[0]
Exemple #19
0
def default_model_trainer(db_engine_with_results_schema, project_storage):
    model_storage_engine = project_storage.model_storage_engine()
    experiment_hash = save_experiment_and_get_hash(
        config={'foo': 'bar'}, 
        db_engine=db_engine_with_results_schema
        )
    run_id = initialize_tracking_and_get_run_id(
        experiment_hash,
        experiment_class_path="",
        random_seed=5,
        experiment_kwargs={},
        db_engine=db_engine_with_results_schema
    )
    # import pdb; pdb.set_trace()
    trainer = ModelTrainer(
        experiment_hash=experiment_hash,
        model_storage_engine=model_storage_engine,
        db_engine=db_engine_with_results_schema,
        model_grouper=ModelGrouper(),
        run_id=run_id,
    )
    yield trainer
Exemple #20
0
    def initialize_components(self):
        split_config = self.config['temporal_config']

        self.chopper = Timechop(
            feature_start_time=dt_from_str(split_config['feature_start_time']),
            feature_end_time=dt_from_str(split_config['feature_end_time']),
            label_start_time=dt_from_str(split_config['label_start_time']),
            label_end_time=dt_from_str(split_config['label_end_time']),
            model_update_frequency=split_config['model_update_frequency'],
            training_label_timespans=split_config['training_label_timespans'],
            test_label_timespans=split_config['test_label_timespans'],
            training_as_of_date_frequencies=split_config[
                'training_as_of_date_frequencies'],
            test_as_of_date_frequencies=split_config[
                'test_as_of_date_frequencies'],
            max_training_histories=split_config['max_training_histories'],
            test_durations=split_config['test_durations'],
        )

        cohort_config = self.config.get('cohort_config', {})
        if 'query' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromQuery(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                query=cohort_config['query'])
        elif 'entities_table' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromEntities(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                entities_table=cohort_config['entities_table'])
        elif 'dense_states' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromDense(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                dense_state_table=cohort_config['dense_states']['table_name'])
        else:
            raise ValueError('Cohort config missing or unrecognized')

        self.label_generator = LabelGenerator(
            label_name=self.config['label_config'].get('name', None),
            query=self.config['label_config']['query'],
            db_engine=self.db_engine,
        )

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name,
            db_engine=self.db_engine,
        )

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config['feature_start_time'])

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get('feature_group_definition', {'all': [True]}))

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get('feature_group_strategies', ['all']))

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config['feature_start_time']),
            label_names=[
                self.config.get('label_config',
                                {}).get('name', DEFAULT_LABEL_NAME)
            ],
            label_types=['binary'],
            matrix_directory=self.matrices_directory,
            cohort_name=self.config.get('cohort_config', {}).get('name', None),
            states=self.config.get('cohort_config',
                                   {}).get('dense_states',
                                           {}).get('state_filters', []),
            user_metadata=self.config.get('user_metadata', {}),
        )

        self.matrix_builder = HighMemoryCSVBuilder(
            db_config={
                'features_schema_name':
                self.features_schema_name,
                'labels_schema_name':
                'public',
                'labels_table_name':
                self.labels_table_name,
                # TODO: have planner/builder take state table later on, so we
                # can grab it from the StateTableGenerator instead of
                # duplicating it here
                'sparse_state_table_name':
                'tmp_sparse_states_{}'.format(self.experiment_hash),
            },
            matrix_directory=self.matrices_directory,
            include_missing_labels_in_train_as=self.config['label_config'].get(
                'include_missing_labels_in_train_as', None),
            engine=self.db_engine,
            replace=self.replace)

        self.trainer = ModelTrainer(
            project_path=self.project_path,
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get('model_group_keys',
                                                       [])),
            db_engine=self.db_engine,
            replace=self.replace)

        self.tester = ModelTester(
            model_storage_engine=self.model_storage_engine,
            project_path=self.project_path,
            replace=self.replace,
            db_engine=self.db_engine,
            individual_importance_config=self.config.get(
                'individual_importance', {}),
            evaluator_config=self.config.get('scoring', {}))
def test_model_trainer(sample_matrix_store, grid_config):
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')

            # Creates a matrix entry in the matrices table with uuid from metadata above
            MatrixFactory(matrix_uuid="1234")
            session.commit()
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(project_path)
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                model_grouper=ModelGrouper(),
                db_engine=db_engine,
            )
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=sample_matrix_store)

            # assert
            # 1. that the models and feature importances table entries are present
            records = [
                row for row in db_engine.execute(
                    'select * from train_results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            records = [
                row for row in db_engine.execute(
                    'select model_hash from model_metadata.models')
            ]
            assert len(records) == 4
            hashes = [row[0] for row in records]

            # 2. that the model groups are distinct
            records = [
                row for row in db_engine.execute(
                    'select distinct model_group_id from model_metadata.models'
                )
            ]
            assert len(records) == 4

            # 3. that the model sizes are saved in the table and all are < 1 kB
            records = [
                row for row in db_engine.execute(
                    'select model_size from model_metadata.models')
            ]
            assert len(records) == 4
            for i in records:
                size = i[0]
                assert size < 1

            # 4. that all four models are cached
            model_pickles = [
                model_storage_engine.get_store(model_hash).load()
                for model_hash in hashes
            ]
            assert len(model_pickles) == 4
            assert len([x for x in model_pickles if x is not None]) == 4

            # 5. that their results can have predictions made on it
            test_matrix = pandas.DataFrame.from_dict({
                'entity_id': [3, 4],
                'feature_one': [4, 4],
                'feature_two': [6, 5],
            })

            test_matrix = InMemoryMatrixStore(matrix=test_matrix, metadata=sample_metadata())\
                .matrix

            for model_pickle in model_pickles:
                predictions = model_pickle.predict(test_matrix)
                assert len(predictions) == 2

            # 6. when run again, same models are returned
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store)
            assert len([
                row for row in db_engine.execute(
                    'select model_hash from model_metadata.models')
            ]) == 4
            assert model_ids == new_model_ids

            # 7. if replace is set, update non-unique attributes and feature importances
            max_batch_run_time = [
                row[0] for row in db_engine.execute(
                    'select max(batch_run_time) from model_metadata.models')
            ][0]
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                model_grouper=ModelGrouper(
                    model_group_keys=['label_name', 'label_timespan']),
                db_engine=db_engine,
                replace=True)
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store,
            )
            assert model_ids == new_model_ids
            assert [
                row['model_id'] for row in db_engine.execute(
                    'select model_id from model_metadata.models order by 1 asc'
                )
            ] == model_ids
            new_max_batch_run_time = [
                row[0] for row in db_engine.execute(
                    'select max(batch_run_time) from model_metadata.models')
            ][0]
            assert new_max_batch_run_time > max_batch_run_time

            records = [
                row for row in db_engine.execute(
                    'select * from train_results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            # 8. if the cache is missing but the metadata is still there, reuse the metadata
            for row in db_engine.execute(
                    'select model_hash from model_metadata.models'):
                model_storage_engine.get_store(row[0]).delete()
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store)
            assert model_ids == sorted(new_model_ids)

            # 9. that the generator interface works the same way
            new_model_ids = trainer.generate_trained_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store)
            assert model_ids == \
                sorted([model_id for model_id in new_model_ids])
Exemple #22
0
class ExperimentBase(ABC):
    """The base class for all Experiments.

    Subclasses must implement the following four methods:
    process_query_tasks
    process_matrix_build_tasks
    process_train_tasks
    process_model_test_tasks

    Look at singlethreaded.py for reference implementation of each.

    Args:
        config (dict)
        db_engine (triage.util.db.SerializableDbEngine or sqlalchemy.engine.Engine)
        project_path (string)
        replace (bool)
        cleanup_timeout (int)
        materialize_subquery_fromobjs (bool, default True) Whether or not to create and index
            tables for feature "from objects" that are subqueries. Can speed up performance
            when building features for many as-of-dates.
        profile (bool)
    """

    cleanup_timeout = 60  # seconds

    def __init__(
        self,
        config,
        db_engine,
        project_path=None,
        matrix_storage_class=CSVMatrixStore,
        replace=True,
        cleanup=False,
        cleanup_timeout=None,
        materialize_subquery_fromobjs=True,
        profile=False,
    ):
        self._check_config_version(config)
        self.config = config

        self.project_storage = ProjectStorage(project_path)
        self.model_storage_engine = ModelStorageEngine(self.project_storage)
        self.matrix_storage_engine = MatrixStorageEngine(
            self.project_storage, matrix_storage_class
        )
        self.project_path = project_path
        self.replace = replace
        self.db_engine = db_engine
        upgrade_db(db_engine=self.db_engine)

        self.features_schema_name = "features"
        self.materialize_subquery_fromobjs = materialize_subquery_fromobjs
        self.experiment_hash = save_experiment_and_get_hash(self.config, self.db_engine)
        self.labels_table_name = "labels_{}".format(self.experiment_hash)
        self.cohort_table_name = "cohort_{}".format(self.experiment_hash)
        self.initialize_components()

        self.cleanup = cleanup
        if self.cleanup:
            logging.info(
                "cleanup is set to True, so intermediate tables (labels and states) "
                "will be removed after matrix creation"
            )
        else:
            logging.info(
                "cleanup is set to False, so intermediate tables (labels and states) "
                "will not be removed after matrix creation"
            )
        self.cleanup_timeout = (
            self.cleanup_timeout if cleanup_timeout is None else cleanup_timeout
        )
        self.profile = profile
        logging.info("Generate profiling stats? (profile option): %s", self.profile)

    def _check_config_version(self, config):
        if "config_version" in config:
            config_version = config["config_version"]
        else:
            logging.warning(
                "config_version key not found in experiment config. "
                "Assuming v1, which may not be correct"
            )
            config_version = "v1"
        if config_version != CONFIG_VERSION:
            raise ValueError(
                "Experiment config '{}' "
                "does not match current version '{}'. "
                "Will not run experiment.".format(config_version, CONFIG_VERSION)
            )

    def initialize_components(self):
        split_config = self.config["temporal_config"]

        self.chopper = Timechop(**split_config)

        cohort_config = self.config.get("cohort_config", {})
        if "query" in cohort_config:
            self.cohort_table_generator = CohortTableGenerator(
                cohort_table_name=self.cohort_table_name,
                db_engine=self.db_engine,
                query=cohort_config["query"],
                replace=self.replace
            )
        else:
            logging.warning(
                "cohort_config missing or unrecognized. Without a cohort, "
                "you will not be able to make matrices or perform feature imputation."
            )
            self.cohort_table_generator = CohortTableGeneratorNoOp()

        if "label_config" in self.config:
            self.label_generator = LabelGenerator(
                label_name=self.config["label_config"].get("name", None),
                query=self.config["label_config"]["query"],
                replace=self.replace,
                db_engine=self.db_engine,
            )
        else:
            self.label_generator = LabelGeneratorNoOp()
            logging.warning(
                "label_config missing or unrecognized. Without labels, "
                "you will not be able to make matrices."
            )

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name, db_engine=self.db_engine
        )

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config["feature_start_time"],
            materialize_subquery_fromobjs=self.materialize_subquery_fromobjs
        )

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get("feature_group_definition", {"all": [True]})
        )

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get("feature_group_strategies", ["all"])
        )

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config["feature_start_time"]),
            label_names=[
                self.config.get("label_config", {}).get("name", DEFAULT_LABEL_NAME)
            ],
            label_types=["binary"],
            cohort_names=[self.config.get("cohort_config", {}).get("name", None)],
            user_metadata=self.config.get("user_metadata", {}),
        )

        self.matrix_builder = MatrixBuilder(
            db_config={
                "features_schema_name": self.features_schema_name,
                "labels_schema_name": "public",
                "labels_table_name": self.labels_table_name,
                "cohort_table_name": self.cohort_table_name,
            },
            matrix_storage_engine=self.matrix_storage_engine,
            experiment_hash=self.experiment_hash,
            include_missing_labels_in_train_as=self.config.get("label_config", {}).get(
                "include_missing_labels_in_train_as", None
            ),
            engine=self.db_engine,
            replace=self.replace,
        )

        self.trainer = ModelTrainer(
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get("model_group_keys", [])),
            db_engine=self.db_engine,
            replace=self.replace,
        )

        self.tester = ModelTester(
            model_storage_engine=self.model_storage_engine,
            matrix_storage_engine=self.matrix_storage_engine,
            replace=self.replace,
            db_engine=self.db_engine,
            individual_importance_config=self.config.get("individual_importance", {}),
            evaluator_config=self.config.get("scoring", {}),
        )

    @cachedproperty
    def split_definitions(self):
        """Temporal splits based on the experiment's configuration

        Returns: (dict) temporal splits

        Example:
        ```
        {
            'feature_start_time': {datetime},
            'feature_end_time': {datetime},
            'label_start_time': {datetime},
            'label_end_time': {datetime},
            'train_matrix': {
                'first_as_of_time': {datetime},
                'last_as_of_time': {datetime},
                'matrix_info_end_time': {datetime},
                'training_label_timespan': {str},
                'training_as_of_date_frequency': {str},
                'max_training_history': {str},
                'as_of_times': [list of {datetime}s]
            },
            'test_matrices': [list of matrix defs similar to train_matrix]
        }
        ```

        (When updating/setting split definitions, matrices should have
        UUIDs.)

        """
        split_definitions = self.chopper.chop_time()
        logging.info("Computed and stored split definitions: %s", split_definitions)
        logging.info("\n----TIME SPLIT SUMMARY----\n")
        logging.info("Number of time splits: {}".format(len(split_definitions)))
        for split_index, split in enumerate(split_definitions):
            train_times = split["train_matrix"]["as_of_times"]
            test_times = [
                as_of_time
                for test_matrix in split["test_matrices"]
                for as_of_time in test_matrix["as_of_times"]
            ]
            logging.info(
                """Split index {}:
            Training as_of_time_range: {} to {} ({} total)
            Testing as_of_time range: {} to {} ({} total)\n\n""".format(
                    split_index,
                    min(train_times),
                    max(train_times),
                    len(train_times),
                    min(test_times),
                    max(test_times),
                    len(test_times),
                )
            )

        return split_definitions

    @cachedproperty
    def all_as_of_times(self):
        """All 'as of times' in experiment config

        Used for label and feature generation.

        Returns: (list) of datetimes

        """
        all_as_of_times = []
        for split in self.split_definitions:
            all_as_of_times.extend(split["train_matrix"]["as_of_times"])
            logging.debug(
                "Adding as_of_times from train matrix: %s",
                split["train_matrix"]["as_of_times"],
            )
            for test_matrix in split["test_matrices"]:
                logging.debug(
                    "Adding as_of_times from test matrix: %s",
                    test_matrix["as_of_times"],
                )
                all_as_of_times.extend(test_matrix["as_of_times"])

        logging.info(
            "Computed %s total as_of_times for label and feature generation",
            len(all_as_of_times),
        )
        distinct_as_of_times = list(set(all_as_of_times))
        logging.info(
            "Computed %s distinct as_of_times for label and feature generation",
            len(distinct_as_of_times),
        )
        logging.info(
            "You can view all as_of_times by inspecting `.all_as_of_times` on this Experiment"
        )
        return distinct_as_of_times

    @cachedproperty
    def collate_aggregations(self):
        """Collation of ``Aggregation`` objects used by this experiment.

        Returns: (list) of ``collate.Aggregation`` objects

        """
        logging.info("Creating collate aggregations")
        if "feature_aggregations" not in self.config:
            logging.warning("No feature_aggregation config is available")
            return []
        return self.feature_generator.aggregations(
            feature_aggregation_config=self.config["feature_aggregations"],
            feature_dates=self.all_as_of_times,
            state_table=self.cohort_table_name,
        )

    @cachedproperty
    def feature_aggregation_table_tasks(self):
        """All feature table query tasks specified by this
        ``Experiment``.

        Returns: (dict) keys are group table names, values are
            themselves dicts, each with keys for different stages of
            table creation (prepare, inserts, finalize) and with values
            being lists of SQL commands

        """
        logging.info(
            "Calculating feature tasks for %s as_of_times", len(self.all_as_of_times)
        )
        return self.feature_generator.generate_all_table_tasks(
            self.collate_aggregations, task_type="aggregation"
        )

    @cachedproperty
    def feature_imputation_table_tasks(self):
        """All feature imputation query tasks specified by this
        ``Experiment``.

        Returns: (dict) keys are group table names, values are
            themselves dicts, each with keys for different stages of
            table creation (prepare, inserts, finalize) and with values
            being lists of SQL commands

        """
        logging.info(
            "Calculating feature tasks for %s as_of_times", len(self.all_as_of_times)
        )
        return self.feature_generator.generate_all_table_tasks(
            self.collate_aggregations, task_type="imputation"
        )

    @cachedproperty
    def master_feature_dictionary(self):
        """All possible features found in the database. Not all features
        will necessarily end up in matrices

        Returns: (list) of dicts, keys being feature table names and
        values being lists of feature names

        """
        result = self.feature_dictionary_creator.feature_dictionary(
            feature_table_names=self.feature_imputation_table_tasks.keys(),
            index_column_lookup=self.feature_generator.index_column_lookup(
                self.collate_aggregations
            ),
        )
        logging.info("Computed master feature dictionary: %s", result)
        return result

    @property
    def feature_dicts(self):
        """Feature dictionaries, representing the feature tables and
        columns configured in this experiment after computing feature
        groups.

        Returns: (list) of dicts, keys being feature table names and
        values being lists of feature names

        """
        return self.feature_group_mixer.generate(
            self.feature_group_creator.subsets(self.master_feature_dictionary)
        )

    @cachedproperty
    def matrix_build_tasks(self):
        """Tasks for all matrices that need to be built as a part of
        this Experiment.

        Each task contains arguments understood by
        ``Architect.build_matrix``.

        Returns: (list) of dicts

        """
        if not table_has_data(self.cohort_table_name, self.db_engine):
            logging.warning("cohort table is not populated, cannot build any matrices")
            return {}
        if not table_has_data(self.labels_table_name, self.db_engine):
            logging.warning("labels table is not populated, cannot build any matrices")
            return {}
        (updated_split_definitions, matrix_build_tasks) = self.planner.generate_plans(
            self.split_definitions, self.feature_dicts
        )
        self.full_matrix_definitions = updated_split_definitions
        return matrix_build_tasks

    @cachedproperty
    def full_matrix_definitions(self):
        """Full matrix definitions

        Returns: (list) temporal and feature information for each matrix

        """
        (updated_split_definitions, matrix_build_tasks) = self.planner.generate_plans(
            self.split_definitions, self.feature_dicts
        )
        self.matrix_build_tasks = matrix_build_tasks
        return updated_split_definitions

    @property
    def all_label_timespans(self):
        """All train and test label timespans

        Returns: (list) label timespans, in string form as they appeared in the experiment config

        """
        return list(
            set(
                self.config["temporal_config"]["training_label_timespans"]
                + self.config["temporal_config"]["test_label_timespans"]
            )
        )

    def generate_labels(self):
        """Generate labels based on experiment configuration

        Results are stored in the database, not returned
        """
        self.label_generator.generate_all_labels(
            self.labels_table_name, self.all_as_of_times, self.all_label_timespans
        )

    def generate_cohort(self):
        self.cohort_table_generator.generate_cohort_table(
            as_of_dates=self.all_as_of_times
        )

    def log_split(self, split_num, split):
        logging.info(
            "Starting train/test for %s out of %s: train range: %s to %s",
            split_num + 1,
            len(self.full_matrix_definitions),
            split["train_matrix"]["first_as_of_time"],
            split["train_matrix"]["matrix_info_end_time"],
        )

    @abstractmethod
    def process_train_tasks(self, train_tasks):
        pass

    @abstractmethod
    def process_query_tasks(self, query_tasks):
        pass

    @abstractmethod
    def process_matrix_build_tasks(self, matrix_build_tasks):
        pass

    def generate_preimputation_features(self):
        self.process_query_tasks(self.feature_aggregation_table_tasks)
        logging.info(
            "Finished running preimputation feature queries. The final results are in tables: %s",
            ",".join(agg.get_table_name() for agg in self.collate_aggregations),
        )

    def impute_missing_features(self):
        self.process_query_tasks(self.feature_imputation_table_tasks)
        logging.info(
            "Finished running postimputation feature queries. The final results are in tables: %s",
            ",".join(
                agg.get_table_name(imputed=True) for agg in self.collate_aggregations
            ),
        )

    def build_matrices(self):
        associate_matrices_with_experiment(
            self.experiment_hash,
            self.matrix_build_tasks.keys(),
            self.db_engine
        )
        self.process_matrix_build_tasks(self.matrix_build_tasks)

    def generate_matrices(self):
        logging.info("Creating cohort")
        self.generate_cohort()
        logging.info("Creating labels")
        self.generate_labels()
        logging.info("Creating feature aggregation tables")
        self.generate_preimputation_features()
        logging.info("Creating feature imputation tables")
        self.impute_missing_features()
        logging.info("Building all matrices")
        self.build_matrices()

    def train_and_test_models(self):
        if "grid_config" not in self.config:
            logging.warning(
                "No grid_config was passed in the experiment config. No models will be trained"
            )
            return

        for split_num, split in enumerate(self.full_matrix_definitions):
            self.log_split(split_num, split)
            train_store = self.matrix_storage_engine.get_store(split["train_uuid"])
            if train_store.empty:
                logging.warning(
                    """Train matrix for split %s was empty,
                no point in training this model. Skipping
                """,
                    split["train_uuid"],
                )
                continue
            if len(train_store.labels().unique()) == 1:
                logging.warning(
                    """Train Matrix for split %s had only one
                unique value, no point in training this model. Skipping
                """,
                    split["train_uuid"],
                )
                continue

            logging.info("Training models")

            train_tasks = self.trainer.generate_train_tasks(
                grid_config=self.config["grid_config"],
                misc_db_parameters=dict(
                    test=False, model_comment=self.config.get("model_comment", None)
                ),
                matrix_store=train_store,
            )

            associate_models_with_experiment(
                self.experiment_hash,
                [train_task['model_hash'] for train_task in train_tasks],
                self.db_engine
            )
            model_ids = self.process_train_tasks(train_tasks)

            logging.info("Done training models for split %s", split_num)

            test_tasks = self.tester.generate_model_test_tasks(
                split=split, train_store=train_store, model_ids=model_ids
            )
            logging.info(
                "Found %s non-empty test matrices for split %s",
                len(test_tasks),
                split_num,
            )

            self.process_model_test_tasks(test_tasks)

    def validate(self, strict=True):
        ExperimentValidator(self.db_engine, strict=strict).run(self.config)

    def _run(self):
        try:
            logging.info("Generating matrices")
            self.generate_matrices()
        finally:
            if self.cleanup:
                self.clean_up_tables()

        self.train_and_test_models()
        logging.info("Experiment complete")
        self._log_end_of_run_report()

    def _log_end_of_run_report(self):
        missing_models = missing_model_hashes(self.experiment_hash, self.db_engine)
        if len(missing_models) > 0:
            logging.info("Found %s missing model hashes."
                         "This means that they were supposed to either be trained or reused"
                         "by this experiment but are not present in the models table."
                         "Inspect the logs for any training errors. Full list: %s",
                         len(missing_models),
                         missing_models
                         )
        else:
            logging.info("All models that were supposed to be trained were trained. Awesome!")

        missing_matrices = missing_matrix_uuids(self.experiment_hash, self.db_engine)
        if len(missing_matrices) > 0:
            logging.info("Found %s missing matrix uuids."
                         "This means that they were supposed to either be build or reused"
                         "by this experiment but are not present in the matrices table."
                         "Inspect the logs for any matrix building errors. Full list: %s",
                         len(missing_matrices),
                         missing_matrices
                         )
        else:
            logging.info("All matrices that were supposed to be build were built. Awesome!")

    def clean_up_tables(self):
        logging.info("Cleaning up state and labels tables")
        with timeout(self.cleanup_timeout):
            self.cohort_table_generator.clean_up()
            self.label_generator.clean_up(self.labels_table_name)

    def _run_profile(self):
        cp = cProfile.Profile()
        cp.runcall(self._run)
        store = self.project_storage.get_store(
            ["profiling_stats"],
            f"{int(time.time())}.profile"
        )
        with store.open('wb') as fd:
            cp.create_stats()
            marshal.dump(cp.stats, fd)
            logging.info("Profiling stats of this Triage run calculated and written to %s"
                         "in cProfile format.",
                         store)

    def run(self):
        try:
            if self.profile:
                self._run_profile()
            else:
                self._run()
        except Exception:
            logging.exception("Run interrupted by uncaught exception")
            raise

    __call__ = run
Exemple #23
0
    def initialize_components(self):
        split_config = self.config["temporal_config"]

        self.chopper = Timechop(**split_config)

        cohort_config = self.config.get("cohort_config", {})
        if "query" in cohort_config:
            self.cohort_table_generator = CohortTableGenerator(
                cohort_table_name=self.cohort_table_name,
                db_engine=self.db_engine,
                query=cohort_config["query"],
                replace=self.replace
            )
        else:
            logging.warning(
                "cohort_config missing or unrecognized. Without a cohort, "
                "you will not be able to make matrices or perform feature imputation."
            )
            self.cohort_table_generator = CohortTableGeneratorNoOp()

        if "label_config" in self.config:
            self.label_generator = LabelGenerator(
                label_name=self.config["label_config"].get("name", None),
                query=self.config["label_config"]["query"],
                replace=self.replace,
                db_engine=self.db_engine,
            )
        else:
            self.label_generator = LabelGeneratorNoOp()
            logging.warning(
                "label_config missing or unrecognized. Without labels, "
                "you will not be able to make matrices."
            )

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name, db_engine=self.db_engine
        )

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config["feature_start_time"],
            materialize_subquery_fromobjs=self.materialize_subquery_fromobjs
        )

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get("feature_group_definition", {"all": [True]})
        )

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get("feature_group_strategies", ["all"])
        )

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config["feature_start_time"]),
            label_names=[
                self.config.get("label_config", {}).get("name", DEFAULT_LABEL_NAME)
            ],
            label_types=["binary"],
            cohort_names=[self.config.get("cohort_config", {}).get("name", None)],
            user_metadata=self.config.get("user_metadata", {}),
        )

        self.matrix_builder = MatrixBuilder(
            db_config={
                "features_schema_name": self.features_schema_name,
                "labels_schema_name": "public",
                "labels_table_name": self.labels_table_name,
                "cohort_table_name": self.cohort_table_name,
            },
            matrix_storage_engine=self.matrix_storage_engine,
            experiment_hash=self.experiment_hash,
            include_missing_labels_in_train_as=self.config.get("label_config", {}).get(
                "include_missing_labels_in_train_as", None
            ),
            engine=self.db_engine,
            replace=self.replace,
        )

        self.trainer = ModelTrainer(
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get("model_group_keys", [])),
            db_engine=self.db_engine,
            replace=self.replace,
        )

        self.tester = ModelTester(
            model_storage_engine=self.model_storage_engine,
            matrix_storage_engine=self.matrix_storage_engine,
            replace=self.replace,
            db_engine=self.db_engine,
            individual_importance_config=self.config.get("individual_importance", {}),
            evaluator_config=self.config.get("scoring", {}),
        )
Exemple #24
0
def test_model_trainer(grid_config, default_model_trainer):
    trainer = default_model_trainer
    db_engine = trainer.db_engine
    project_storage = trainer.model_storage_engine.project_storage
    model_storage_engine = trainer.model_storage_engine

    def set_test_seed():
        random.seed(5)

    set_test_seed()
    model_ids = trainer.train_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )

    # assert
    # 1. that the models and feature importances table entries are present
    records = [
        row for row in db_engine.execute(
            "select * from train_results.feature_importances")
    ]
    assert len(records) == 4 * 2  # maybe exclude entity_id? yes

    records = [
        row for row in db_engine.execute(
            "select model_hash from triage_metadata.models")
    ]
    assert len(records) == 4
    hashes = [row[0] for row in records]

    # 2. that the model groups are distinct
    records = [
        row for row in db_engine.execute(
            "select distinct model_group_id from triage_metadata.models")
    ]
    assert len(records) == 4

    # 2. that the random seeds are distinct
    records = [
        row for row in db_engine.execute(
            "select distinct random_seed from triage_metadata.models")
    ]
    assert len(records) == 4

    # 3. that the model sizes are saved in the table and all are < 1 kB
    records = [
        row for row in db_engine.execute(
            "select model_size from triage_metadata.models")
    ]
    assert len(records) == 4
    for i in records:
        size = i[0]
        assert size < 1

    # 4. that all four models are cached
    model_pickles = [
        model_storage_engine.load(model_hash) for model_hash in hashes
    ]
    assert len(model_pickles) == 4
    assert len([x for x in model_pickles if x is not None]) == 4

    # 5. that their results can have predictions made on it
    test_matrix = pd.DataFrame.from_dict({
        "entity_id": [3, 4],
        "feature_one": [4, 4],
        "feature_two": [6, 5]
    }).set_index("entity_id")

    for model_pickle in model_pickles:
        predictions = model_pickle.predict(test_matrix)
        assert len(predictions) == 2

    # 6. when run again with the same starting seed, same models are returned
    set_test_seed()
    new_model_ids = trainer.train_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )
    assert (len([
        row for row in db_engine.execute(
            "select model_hash from triage_metadata.models")
    ]) == 4)
    assert model_ids == new_model_ids

    # 7. if replace is set, update non-unique attributes and feature importances
    max_batch_run_time = [
        row[0] for row in db_engine.execute(
            "select max(batch_run_time) from triage_metadata.models")
    ][0]
    trainer = ModelTrainer(
        experiment_hash=None,
        model_storage_engine=model_storage_engine,
        model_grouper=ModelGrouper(
            model_group_keys=["label_name", "label_timespan"]),
        db_engine=db_engine,
        replace=True,
    )
    set_test_seed()
    new_model_ids = trainer.train_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )
    assert model_ids == new_model_ids
    assert [
        row["model_id"] for row in db_engine.execute(
            "select model_id from triage_metadata.models order by 1 asc")
    ] == model_ids
    new_max_batch_run_time = [
        row[0] for row in db_engine.execute(
            "select max(batch_run_time) from triage_metadata.models")
    ][0]
    assert new_max_batch_run_time > max_batch_run_time

    records = [
        row for row in db_engine.execute(
            "select * from train_results.feature_importances")
    ]
    assert len(records) == 4 * 2  # maybe exclude entity_id? yes

    # 8. if the cache is missing but the metadata is still there, reuse the metadata
    set_test_seed()
    for row in db_engine.execute(
            "select model_hash from triage_metadata.models"):
        model_storage_engine.delete(row[0])
    new_model_ids = trainer.train_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )
    assert model_ids == sorted(new_model_ids)

    # 9. that the generator interface works the same way
    set_test_seed()
    new_model_ids = trainer.generate_trained_models(
        grid_config=grid_config,
        misc_db_parameters=dict(),
        matrix_store=get_matrix_store(project_storage),
    )
    assert model_ids == sorted([model_id for model_id in new_model_ids])
Exemple #25
0
def test_integration():
    with rig_engines() as (db_engine, project_storage):
        train_store = get_matrix_store(
            project_storage, matrix_creator(),
            matrix_metadata_creator(matrix_type='train'))
        as_of_dates = [datetime.date(2016, 12, 21), datetime.date(2017, 1, 21)]

        test_stores = []
        for as_of_date in as_of_dates:
            matrix_store = get_matrix_store(
                project_storage,
                pandas.DataFrame.from_dict({
                    'entity_id': [3],
                    'feature_one': [8],
                    'feature_two': [5],
                    'label': [0]
                }).set_index('entity_id'),
                matrix_metadata_creator(end_time=as_of_date,
                                        indices=['entity_id']))
            test_stores.append(matrix_store)

        model_storage_engine = ModelStorageEngine(project_storage)

        experiment_hash = save_experiment_and_get_hash({}, db_engine)
        # instantiate pipeline objects
        trainer = ModelTrainer(
            experiment_hash=experiment_hash,
            model_storage_engine=model_storage_engine,
            db_engine=db_engine,
        )
        predictor = Predictor(model_storage_engine, db_engine)
        model_evaluator = ModelEvaluator([{
            'metrics': ['precision@'],
            'thresholds': {
                'top_n': [5]
            }
        }], [{}], db_engine)

        # run the pipeline
        grid_config = {
            'sklearn.linear_model.LogisticRegression': {
                'C': [0.00001, 0.0001],
                'penalty': ['l1', 'l2'],
                'random_state': [2193]
            }
        }
        model_ids = trainer.train_models(grid_config=grid_config,
                                         misc_db_parameters=dict(),
                                         matrix_store=train_store)

        for model_id in model_ids:
            for as_of_date, test_store in zip(as_of_dates, test_stores):
                predictions_proba = predictor.predict(
                    model_id,
                    test_store,
                    misc_db_parameters=dict(),
                    train_matrix_columns=['feature_one', 'feature_two'])

                model_evaluator.evaluate(
                    predictions_proba,
                    test_store,
                    model_id,
                )

        # assert
        # 1. that the predictions table entries are present and
        # can be linked to the original models
        records = [
            row for row in db_engine.execute(
                '''select entity_id, model_id, as_of_date
            from test_results.predictions
            join model_metadata.models using (model_id)
            order by 3, 2''')
        ]
        assert records == [
            (3, 1, datetime.datetime(2016, 12, 21)),
            (3, 2, datetime.datetime(2016, 12, 21)),
            (3, 3, datetime.datetime(2016, 12, 21)),
            (3, 4, datetime.datetime(2016, 12, 21)),
            (3, 1, datetime.datetime(2017, 1, 21)),
            (3, 2, datetime.datetime(2017, 1, 21)),
            (3, 3, datetime.datetime(2017, 1, 21)),
            (3, 4, datetime.datetime(2017, 1, 21)),
        ]

        # that evaluations are there
        records = [
            row for row in db_engine.execute('''
                select model_id, evaluation_start_time, metric, parameter
                from test_results.evaluations order by 2, 1''')
        ]
        assert records == [
            (1, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (2, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (3, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (4, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (1, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            (2, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            (3, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            (4, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
        ]
Exemple #26
0
def test_model_trainer(grid_config):
    with rig_engines() as (db_engine, project_storage):
        # Creates a matrix entry in the matrices table with uuid from metadata above
        model_storage_engine = project_storage.model_storage_engine()
        trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=model_storage_engine,
            model_grouper=ModelGrouper(),
            db_engine=db_engine,
        )
        model_ids = trainer.train_models(
            grid_config=grid_config,
            misc_db_parameters=dict(),
            matrix_store=get_matrix_store(project_storage),
        )

        # assert
        # 1. that the models and feature importances table entries are present
        records = [
            row for row in db_engine.execute(
                'select * from train_results.feature_importances')
        ]
        assert len(records) == 4 * 2  # maybe exclude entity_id? yes

        records = [
            row for row in db_engine.execute(
                'select model_hash from model_metadata.models')
        ]
        assert len(records) == 4
        hashes = [row[0] for row in records]

        # 2. that the model groups are distinct
        records = [
            row for row in db_engine.execute(
                'select distinct model_group_id from model_metadata.models')
        ]
        assert len(records) == 4

        # 3. that the model sizes are saved in the table and all are < 1 kB
        records = [
            row for row in db_engine.execute(
                'select model_size from model_metadata.models')
        ]
        assert len(records) == 4
        for i in records:
            size = i[0]
            assert size < 1

        # 4. that all four models are cached
        model_pickles = [
            model_storage_engine.load(model_hash) for model_hash in hashes
        ]
        assert len(model_pickles) == 4
        assert len([x for x in model_pickles if x is not None]) == 4

        # 5. that their results can have predictions made on it
        test_matrix = pandas.DataFrame.from_dict({
            'entity_id': [3, 4],
            'feature_one': [4, 4],
            'feature_two': [6, 5],
        }).set_index('entity_id')

        for model_pickle in model_pickles:
            predictions = model_pickle.predict(test_matrix)
            assert len(predictions) == 2

        # 6. when run again, same models are returned
        new_model_ids = trainer.train_models(
            grid_config=grid_config,
            misc_db_parameters=dict(),
            matrix_store=get_matrix_store(project_storage))
        assert len([
            row for row in db_engine.execute(
                'select model_hash from model_metadata.models')
        ]) == 4
        assert model_ids == new_model_ids

        # 7. if replace is set, update non-unique attributes and feature importances
        max_batch_run_time = [
            row[0] for row in db_engine.execute(
                'select max(batch_run_time) from model_metadata.models')
        ][0]
        trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=model_storage_engine,
            model_grouper=ModelGrouper(
                model_group_keys=['label_name', 'label_timespan']),
            db_engine=db_engine,
            replace=True)
        new_model_ids = trainer.train_models(
            grid_config=grid_config,
            misc_db_parameters=dict(),
            matrix_store=get_matrix_store(project_storage))
        assert model_ids == new_model_ids
        assert [
            row['model_id'] for row in db_engine.execute(
                'select model_id from model_metadata.models order by 1 asc')
        ] == model_ids
        new_max_batch_run_time = [
            row[0] for row in db_engine.execute(
                'select max(batch_run_time) from model_metadata.models')
        ][0]
        assert new_max_batch_run_time > max_batch_run_time

        records = [
            row for row in db_engine.execute(
                'select * from train_results.feature_importances')
        ]
        assert len(records) == 4 * 2  # maybe exclude entity_id? yes

        # 8. if the cache is missing but the metadata is still there, reuse the metadata
        for row in db_engine.execute(
                'select model_hash from model_metadata.models'):
            model_storage_engine.delete(row[0])
        new_model_ids = trainer.train_models(
            grid_config=grid_config,
            misc_db_parameters=dict(),
            matrix_store=get_matrix_store(project_storage))
        assert model_ids == sorted(new_model_ids)

        # 9. that the generator interface works the same way
        new_model_ids = trainer.generate_trained_models(
            grid_config=grid_config,
            misc_db_parameters=dict(),
            matrix_store=get_matrix_store(project_storage))
        assert model_ids == \
            sorted([model_id for model_id in new_model_ids])
Exemple #27
0
def test_model_trainer():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)

        grid_config = {
            'sklearn.linear_model.LogisticRegression': {
                'C': [0.00001, 0.0001],
                'penalty': ['l1', 'l2'],
                'random_state': [2193]
            }
        }

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')

            # create training set
            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            metadata = {
                'feature_start_time': datetime.date(2012, 12, 20),
                'end_time': datetime.date(2016, 12, 20),
                'label_name': 'label',
                'label_timespan': '1y',
                'metta-uuid': '1234',
                'feature_names': ['ft1', 'ft2'],
                'indices': ['entity_id'],
            }
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(project_path)
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )
            matrix_store = InMemoryMatrixStore(matrix, metadata)
            model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )

            # assert
            # 1. that the models and feature importances table entries are present
            records = [
                row for row in
                engine.execute('select * from results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            records = [
                row for row in
                engine.execute('select model_hash from results.models')
            ]
            assert len(records) == 4
            hashes = [row[0] for row in records]

            # 2. that the model groups are distinct
            records = [
                row for row in
                engine.execute('select distinct model_group_id from results.models')
            ]
            assert len(records) == 4

            # 3. that all four models are cached
            model_pickles = [
                model_storage_engine.get_store(model_hash).load()
                for model_hash in hashes
            ]
            assert len(model_pickles) == 4
            assert len([x for x in model_pickles if x is not None]) == 4

            # 4. that their results can have predictions made on it
            test_matrix = pandas.DataFrame.from_dict({
                'entity_id': [3, 4],
                'feature_one': [4, 4],
                'feature_two': [6, 5],
            })

            test_matrix = InMemoryMatrixStore(matrix=test_matrix, metadata=metadata).matrix

            for model_pickle in model_pickles:
                predictions = model_pickle.predict(test_matrix)
                assert len(predictions) == 2

            # 5. when run again, same models are returned
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )
            assert len([
                row for row in
                engine.execute('select model_hash from results.models')
            ]) == 4
            assert model_ids == new_model_ids

            # 6. if replace is set, update non-unique attributes and feature importances
            max_batch_run_time = [
                row[0] for row in
                engine.execute('select max(batch_run_time) from results.models')
            ][0]
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan'],
                replace=True
            )
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store,
            )
            assert model_ids == new_model_ids
            assert [
                row['model_id'] for row in
                engine.execute('select model_id from results.models order by 1 asc')
            ] == model_ids
            new_max_batch_run_time = [
                row[0] for row in
                engine.execute('select max(batch_run_time) from results.models')
            ][0]
            assert new_max_batch_run_time > max_batch_run_time

            records = [
                row for row in
                engine.execute('select * from results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            # 7. if the cache is missing but the metadata is still there, reuse the metadata
            for row in engine.execute('select model_hash from results.models'):
                model_storage_engine.get_store(row[0]).delete()
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )
            assert model_ids == sorted(new_model_ids)

            # 8. that the generator interface works the same way
            new_model_ids = trainer.generate_trained_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )
            assert model_ids == \
                sorted([model_id for model_id in new_model_ids])
Exemple #28
0
def test_integration():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            project_path = 'econ-dev/inspections'

            # create train and test matrices
            train_matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')
            train_metadata = {
                'feature_start_time': datetime.date(2012, 12, 20),
                'end_time': datetime.date(2016, 12, 20),
                'label_name': 'label',
                'label_timespan': '1y',
                'feature_names': ['ft1', 'ft2'],
                'metta-uuid': '1234',
                'indices': ['entity_id'],
                'matrix_type': 'train'
            }
            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

            train_store = InMemoryMatrixStore(train_matrix, sample_metadata())

            as_of_dates = [
                datetime.date(2016, 12, 21),
                datetime.date(2017, 1, 21)
            ]

            test_stores = [
                InMemoryMatrixStore(
                    pandas.DataFrame.from_dict({
                        'entity_id': [3],
                        'feature_one': [8],
                        'feature_two': [5],
                        'label': [5]
                    }), {
                        'label_name': 'label',
                        'label_timespan': '1y',
                        'end_time': as_of_date,
                        'metta-uuid': '1234',
                        'indices': ['entity_id'],
                        'matrix_type': 'test',
                        'as_of_date_frequency': '1month'
                    }) for as_of_date in as_of_dates
            ]

            model_storage_engine = S3ModelStorageEngine(project_path)

            experiment_hash = save_experiment_and_get_hash({}, db_engine)
            # instantiate pipeline objects
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=experiment_hash,
                model_storage_engine=model_storage_engine,
                db_engine=db_engine,
            )
            predictor = Predictor(project_path, model_storage_engine,
                                  db_engine)
            model_evaluator = ModelEvaluator([{
                'metrics': ['precision@'],
                'thresholds': {
                    'top_n': [5]
                }
            }], [{}], db_engine)

            # run the pipeline
            grid_config = {
                'sklearn.linear_model.LogisticRegression': {
                    'C': [0.00001, 0.0001],
                    'penalty': ['l1', 'l2'],
                    'random_state': [2193]
                }
            }
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=train_store)

            for model_id in model_ids:
                for as_of_date, test_store in zip(as_of_dates, test_stores):
                    predictions_proba = predictor.predict(
                        model_id,
                        test_store,
                        misc_db_parameters=dict(),
                        train_matrix_columns=['feature_one', 'feature_two'])

                    model_evaluator.evaluate(
                        predictions_proba,
                        test_store,
                        model_id,
                    )

            # assert
            # 1. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row for row in db_engine.execute(
                    '''select entity_id, model_id, as_of_date
                from test_results.test_predictions
                join model_metadata.models using (model_id)
                order by 3, 2''')
            ]
            assert records == [
                (3, 1, datetime.datetime(2016, 12, 21)),
                (3, 2, datetime.datetime(2016, 12, 21)),
                (3, 3, datetime.datetime(2016, 12, 21)),
                (3, 4, datetime.datetime(2016, 12, 21)),
                (3, 1, datetime.datetime(2017, 1, 21)),
                (3, 2, datetime.datetime(2017, 1, 21)),
                (3, 3, datetime.datetime(2017, 1, 21)),
                (3, 4, datetime.datetime(2017, 1, 21)),
            ]

            # that evaluations are there
            records = [
                row for row in db_engine.execute('''
                    select model_id, evaluation_start_time, metric, parameter
                    from test_results.test_evaluations order by 2, 1''')
            ]
            assert records == [
                (1, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (2, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (3, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (4, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (1, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (2, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (3, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (4, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            ]
Exemple #29
0
class ExperimentBase(ABC):
    """The base class for all Experiments.

    Subclasses must implement the following four methods:
    process_query_tasks
    process_matrix_build_tasks
    process_train_tasks
    process_model_test_tasks

    Look at singlethreaded.py for reference implementation of each.

    Args:
        config (dict)
        db_engine (triage.util.db.SerializableDbEngine or sqlalchemy.engine.Engine)
        project_path (string)
        replace (bool)
        cleanup_timeout (int)
    """
    cleanup_timeout = 60  # seconds

    def __init__(
        self,
        config,
        db_engine,
        project_path=None,
        matrix_storage_class=CSVMatrixStore,
        replace=True,
        cleanup=False,
        cleanup_timeout=None,
    ):
        self._check_config_version(config)
        self.config = config

        if isinstance(db_engine, Engine):
            logging.warning('Raw, unserializable SQLAlchemy engine passed. URL will be used, other options may be lost in multi-process environments')
            self.db_engine = create_engine(db_engine.url)
        else:
            self.db_engine = db_engine

        self.project_storage = ProjectStorage(project_path)
        self.model_storage_engine = ModelStorageEngine(self.project_storage)
        self.matrix_storage_engine = MatrixStorageEngine(self.project_storage, matrix_storage_class)
        self.project_path = project_path
        self.replace = replace
        upgrade_db(db_engine=self.db_engine)

        self.features_schema_name = 'features'
        self.experiment_hash = save_experiment_and_get_hash(self.config,
                                                            self.db_engine)
        self.labels_table_name = 'labels_{}'.format(self.experiment_hash)
        self.initialize_components()

        self.cleanup = cleanup
        if self.cleanup:
            logging.info('cleanup is set to True, so intermediate tables (labels and states) will be removed after matrix creation')
        else:
            logging.info('cleanup is set to False, so intermediate tables (labels and states) will not be removed after matrix creation')
        self.cleanup_timeout = (self.cleanup_timeout if cleanup_timeout is None
                                else cleanup_timeout)

    def _check_config_version(self, config):
        if 'config_version' in config:
            config_version = config['config_version']
        else:
            logging.warning('config_version key not found in experiment config. '
                            'Assuming v1, which may not be correct')
            config_version = 'v1'
        if config_version != CONFIG_VERSION:
            raise ValueError(
                "Experiment config '{}' "
                "does not match current version '{}'. "
                "Will not run experiment."
                .format(config_version, CONFIG_VERSION)
            )

    def initialize_components(self):
        split_config = self.config['temporal_config']

        self.chopper = Timechop(**split_config)

        cohort_config = self.config.get('cohort_config', {})
        if 'query' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromQuery(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                query=cohort_config['query']
            )
        elif 'entities_table' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromEntities(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                entities_table=cohort_config['entities_table']
            )
        elif 'dense_states' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromDense(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                dense_state_table=cohort_config['dense_states']['table_name']
            )
        else:
            logging.warning('cohort_config missing or unrecognized. Without a cohort, you will not be able to make matrices or perform feature imputation.')
            self.state_table_generator = StateTableGeneratorNoOp()

        if 'label_config' in self.config:
            self.label_generator = LabelGenerator(
                label_name=self.config['label_config'].get('name', None),
                query=self.config['label_config']['query'],
                db_engine=self.db_engine,
            )
        else:
            self.label_generator = LabelGeneratorNoOp()
            logging.warning('label_config missing or unrecognized. Without labels, you will not be able to make matrices.')

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name,
            db_engine=self.db_engine,
        )

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config['feature_start_time']
        )

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get('feature_group_definition', {'all': [True]})
        )

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get('feature_group_strategies', ['all'])
        )

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config['feature_start_time']),
            label_names=[self.config.get('label_config', {}).get('name', DEFAULT_LABEL_NAME)],
            label_types=['binary'],
            cohort_name=self.config.get('cohort_config', {}).get('name', None),
            states=self.config.get('cohort_config', {}).get('dense_states', {})
            .get('state_filters', []),
            user_metadata=self.config.get('user_metadata', {}),
        )

        self.matrix_builder = MatrixBuilder(
            db_config={
                'features_schema_name': self.features_schema_name,
                'labels_schema_name': 'public',
                'labels_table_name': self.labels_table_name,
                # TODO: have planner/builder take state table later on, so we
                # can grab it from the StateTableGenerator instead of
                # duplicating it here
                'sparse_state_table_name': self.sparse_states_table_name,
            },
            matrix_storage_engine=self.matrix_storage_engine,
            include_missing_labels_in_train_as=self.config.get('label_config', {})
            .get('include_missing_labels_in_train_as', None),
            engine=self.db_engine,
            replace=self.replace
        )

        self.trainer = ModelTrainer(
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get('model_group_keys', [])),
            db_engine=self.db_engine,
            replace=self.replace
        )

        self.tester = ModelTester(
            model_storage_engine=self.model_storage_engine,
            matrix_storage_engine=self.matrix_storage_engine,
            replace=self.replace,
            db_engine=self.db_engine,
            individual_importance_config=self.config.get('individual_importance', {}),
            evaluator_config=self.config.get('scoring', {})
        )

    @property
    def sparse_states_table_name(self):
        return 'tmp_sparse_states_{}'.format(self.experiment_hash)

    @cachedproperty
    def split_definitions(self):
        """Temporal splits based on the experiment's configuration

        Returns: (dict) temporal splits

        Example:
        ```
        {
            'feature_start_time': {datetime},
            'feature_end_time': {datetime},
            'label_start_time': {datetime},
            'label_end_time': {datetime},
            'train_matrix': {
                'first_as_of_time': {datetime},
                'last_as_of_time': {datetime},
                'matrix_info_end_time': {datetime},
                'training_label_timespan': {str},
                'training_as_of_date_frequency': {str},
                'max_training_history': {str},
                'as_of_times': [list of {datetime}s]
            },
            'test_matrices': [list of matrix defs similar to train_matrix]
        }
        ```

        (When updating/setting split definitions, matrices should have
        UUIDs.)

        """
        split_definitions = self.chopper.chop_time()
        logging.info('Computed and stored split definitions: %s',
                     split_definitions)
        logging.info('\n----TIME SPLIT SUMMARY----\n')
        logging.info('Number of time splits: {}'.format(len(split_definitions)))
        for split_index, split in enumerate(split_definitions):
            train_times = split['train_matrix']['as_of_times']
            test_times = [as_of_time for test_matrix in split['test_matrices']
                          for as_of_time in test_matrix['as_of_times']]
            logging.info('''Split index {}:
            Training as_of_time_range: {} to {} ({} total)
            Testing as_of_time range: {} to {} ({} total)\n\n'''.format(
                split_index,
                min(train_times),
                max(train_times),
                len(train_times),
                min(test_times),
                max(test_times),
                len(test_times)
            ))

        return split_definitions

    @cachedproperty
    def all_as_of_times(self):
        """All 'as of times' in experiment config

        Used for label and feature generation.

        Returns: (list) of datetimes

        """
        all_as_of_times = []
        for split in self.split_definitions:
            all_as_of_times.extend(split['train_matrix']['as_of_times'])
            logging.debug('Adding as_of_times from train matrix: %s',
                         split['train_matrix']['as_of_times'])
            for test_matrix in split['test_matrices']:
                logging.debug('Adding as_of_times from test matrix: %s',
                             test_matrix['as_of_times'])
                all_as_of_times.extend(test_matrix['as_of_times'])

        logging.info(
            'Computed %s total as_of_times for label and feature generation',
            len(all_as_of_times)
        )
        distinct_as_of_times = list(set(all_as_of_times))
        logging.info(
            'Computed %s distinct as_of_times for label and feature generation',
            len(distinct_as_of_times)
        )
        logging.info('You can view all as_of_times by inspecting `.all_as_of_times` on this Experiment')
        return distinct_as_of_times

    @cachedproperty
    def collate_aggregations(self):
        """Collation of ``Aggregation`` objects used by this experiment.

        Returns: (list) of ``collate.Aggregation`` objects

        """
        logging.info('Creating collate aggregations')
        cohort_table = self.state_table_generator.sparse_table_name
        if 'feature_aggregations' not in self.config:
            logging.warning('No feature_aggregation config is available')
            return []
        return self.feature_generator.aggregations(
            feature_aggregation_config=self.config['feature_aggregations'],
            feature_dates=self.all_as_of_times,
            state_table=cohort_table
        )

    @cachedproperty
    def feature_aggregation_table_tasks(self):
        """All feature table query tasks specified by this
        ``Experiment``.

        Returns: (dict) keys are group table names, values are
            themselves dicts, each with keys for different stages of
            table creation (prepare, inserts, finalize) and with values
            being lists of SQL commands

        """
        logging.info('Calculating feature tasks for %s as_of_times',
                     len(self.all_as_of_times))
        return self.feature_generator.generate_all_table_tasks(
            self.collate_aggregations,
            task_type='aggregation'
        )

    @cachedproperty
    def feature_imputation_table_tasks(self):
        """All feature imputation query tasks specified by this
        ``Experiment``.

        Returns: (dict) keys are group table names, values are
            themselves dicts, each with keys for different stages of
            table creation (prepare, inserts, finalize) and with values
            being lists of SQL commands

        """
        logging.info('Calculating feature tasks for %s as_of_times',
                     len(self.all_as_of_times))
        return self.feature_generator.generate_all_table_tasks(
            self.collate_aggregations,
            task_type='imputation'
        )

    @cachedproperty
    def master_feature_dictionary(self):
        """All possible features found in the database. Not all features
        will necessarily end up in matrices

        Returns: (list) of dicts, keys being feature table names and
        values being lists of feature names

        """
        result = self.feature_dictionary_creator.feature_dictionary(
            feature_table_names=self.feature_imputation_table_tasks.keys(),
            index_column_lookup=self.feature_generator.index_column_lookup(
                self.collate_aggregations
            )
        )
        logging.info('Computed master feature dictionary: %s', result)
        return result

    @property
    def feature_dicts(self):
        """Feature dictionaries, representing the feature tables and
        columns configured in this experiment after computing feature
        groups.

        Returns: (list) of dicts, keys being feature table names and
        values being lists of feature names

        """
        return self.feature_group_mixer.generate(
            self.feature_group_creator.subsets(self.master_feature_dictionary)
        )

    @cachedproperty
    def matrix_build_tasks(self):
        """Tasks for all matrices that need to be built as a part of
        this Experiment.

        Each task contains arguments understood by
        ``Architect.build_matrix``.

        Returns: (list) of dicts

        """
        if not table_has_data(self.sparse_states_table_name, self.db_engine):
            logging.warning('cohort table is not populated, cannot build any matrices')
            return {}
        if not table_has_data(self.labels_table_name, self.db_engine):
            logging.warning('labels table is not populated, cannot build any matrices')
            return {}
        (
            updated_split_definitions,
            matrix_build_tasks
        ) = self.planner.generate_plans(
            self.split_definitions,
            self.feature_dicts
        )
        self.full_matrix_definitions = updated_split_definitions
        return matrix_build_tasks

    @cachedproperty
    def full_matrix_definitions(self):
        """Full matrix definitions

        Returns: (list) temporal and feature information for each matrix

        """
        (
            updated_split_definitions,
            matrix_build_tasks
        ) = self.planner.generate_plans(
            self.split_definitions,
            self.feature_dicts
        )
        self.matrix_build_tasks = matrix_build_tasks
        return updated_split_definitions

    @property
    def all_label_timespans(self):
        """All train and test label timespans

        Returns: (list) label timespans, in string form as they appeared in the experiment config

        """
        return list(set(
            self.config['temporal_config']['training_label_timespans'] +
            self.config['temporal_config']['test_label_timespans']
        ))

    def generate_labels(self):
        """Generate labels based on experiment configuration

        Results are stored in the database, not returned
        """
        self.label_generator.generate_all_labels(
            self.labels_table_name,
            self.all_as_of_times,
            self.all_label_timespans
        )

    def generate_cohort(self):
        self.state_table_generator.generate_sparse_table(
            as_of_dates=self.all_as_of_times
        )

    def log_split(self, split_num, split):
        logging.info(
            'Starting train/test for %s out of %s: train range: %s to %s',
            split_num+1,
            len(self.full_matrix_definitions),
            split['train_matrix']['first_as_of_time'],
            split['train_matrix']['matrix_info_end_time'],
        )

    @abstractmethod
    def process_train_tasks(self, train_tasks):
        pass

    @abstractmethod
    def process_query_tasks(self, query_tasks):
        pass

    @abstractmethod
    def process_matrix_build_tasks(self, matrix_build_tasks):
        pass

    def generate_preimputation_features(self):
        self.process_query_tasks(self.feature_aggregation_table_tasks)
        logging.info('Finished running preimputation feature queries. The final results are in tables: %s',
                     ','.join(agg.get_table_name() for agg in self.collate_aggregations)
                     )

    def impute_missing_features(self):
        self.process_query_tasks(self.feature_imputation_table_tasks)
        logging.info('Finished running postimputation feature queries. The final results are in tables: %s',
                     ','.join(agg.get_table_name(imputed=True) for agg in self.collate_aggregations)
                     )

    def build_matrices(self):
        self.process_matrix_build_tasks(self.matrix_build_tasks)

    def generate_matrices(self):
        logging.info('Creating cohort')
        self.generate_cohort()
        logging.info('Creating labels')
        self.generate_labels()
        logging.info('Creating feature aggregation tables')
        self.generate_preimputation_features()
        logging.info('Creating feature imputation tables')
        self.impute_missing_features()
        logging.info('Building all matrices')
        self.build_matrices()

    def train_and_test_models(self):
        if 'grid_config' not in self.config:
            logging.warning('No grid_config was passed in the experiment config. No models will be trained')
            return

        for split_num, split in enumerate(self.full_matrix_definitions):
            self.log_split(split_num, split)
            train_store = self.matrix_storage_engine.get_store(split['train_uuid'])
            if train_store.empty:
                logging.warning('''Train matrix for split %s was empty,
                no point in training this model. Skipping
                ''', split['train_uuid'])
                continue
            if len(train_store.labels().unique()) == 1:
                logging.warning('''Train Matrix for split %s had only one
                unique value, no point in training this model. Skipping
                ''', split['train_uuid'])
                continue

            logging.info('Training models')

            train_tasks = self.trainer.generate_train_tasks(
                grid_config=self.config['grid_config'],
                misc_db_parameters=dict(
                    test=False,
                    model_comment=self.config.get('model_comment', None),
                ),
                matrix_store=train_store
            )
            model_ids = self.process_train_tasks(train_tasks)

            logging.info('Done training models for split %s', split_num)

            test_tasks = self.tester.generate_model_test_tasks(
                split=split,
                train_store=train_store,
                model_ids=model_ids,
            )
            logging.info('Found %s non-empty test matrices for split %s', len(test_tasks), split_num)

            self.process_model_test_tasks(test_tasks)

    def validate(self, strict=True):
        ExperimentValidator(self.db_engine, strict=strict).run(self.config)

    def _run(self):
        try:
            logging.info('Generating matrices')
            self.generate_matrices()
        finally:
            if self.cleanup:
                self.clean_up_tables()

        self.train_and_test_models()

    def clean_up_tables(self):
        logging.info('Cleaning up state and labels tables')
        with timeout(self.cleanup_timeout):
            self.state_table_generator.clean_up()
            self.label_generator.clean_up(self.labels_table_name)

    def run(self):
        try:
            self._run()
        except Exception:
            logging.exception('Run interrupted by uncaught exception')
            raise

    __call__ = run
Exemple #30
0
    def initialize_components(self):
        split_config = self.config['temporal_config']

        self.chopper = Timechop(**split_config)

        cohort_config = self.config.get('cohort_config', {})
        if 'query' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromQuery(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                query=cohort_config['query']
            )
        elif 'entities_table' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromEntities(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                entities_table=cohort_config['entities_table']
            )
        elif 'dense_states' in cohort_config:
            self.state_table_generator = StateTableGeneratorFromDense(
                experiment_hash=self.experiment_hash,
                db_engine=self.db_engine,
                dense_state_table=cohort_config['dense_states']['table_name']
            )
        else:
            logging.warning('cohort_config missing or unrecognized. Without a cohort, you will not be able to make matrices or perform feature imputation.')
            self.state_table_generator = StateTableGeneratorNoOp()

        if 'label_config' in self.config:
            self.label_generator = LabelGenerator(
                label_name=self.config['label_config'].get('name', None),
                query=self.config['label_config']['query'],
                db_engine=self.db_engine,
            )
        else:
            self.label_generator = LabelGeneratorNoOp()
            logging.warning('label_config missing or unrecognized. Without labels, you will not be able to make matrices.')

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name,
            db_engine=self.db_engine,
        )

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config['feature_start_time']
        )

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get('feature_group_definition', {'all': [True]})
        )

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get('feature_group_strategies', ['all'])
        )

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config['feature_start_time']),
            label_names=[self.config.get('label_config', {}).get('name', DEFAULT_LABEL_NAME)],
            label_types=['binary'],
            cohort_name=self.config.get('cohort_config', {}).get('name', None),
            states=self.config.get('cohort_config', {}).get('dense_states', {})
            .get('state_filters', []),
            user_metadata=self.config.get('user_metadata', {}),
        )

        self.matrix_builder = MatrixBuilder(
            db_config={
                'features_schema_name': self.features_schema_name,
                'labels_schema_name': 'public',
                'labels_table_name': self.labels_table_name,
                # TODO: have planner/builder take state table later on, so we
                # can grab it from the StateTableGenerator instead of
                # duplicating it here
                'sparse_state_table_name': self.sparse_states_table_name,
            },
            matrix_storage_engine=self.matrix_storage_engine,
            include_missing_labels_in_train_as=self.config.get('label_config', {})
            .get('include_missing_labels_in_train_as', None),
            engine=self.db_engine,
            replace=self.replace
        )

        self.trainer = ModelTrainer(
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get('model_group_keys', [])),
            db_engine=self.db_engine,
            replace=self.replace
        )

        self.tester = ModelTester(
            model_storage_engine=self.model_storage_engine,
            matrix_storage_engine=self.matrix_storage_engine,
            replace=self.replace,
            db_engine=self.db_engine,
            individual_importance_config=self.config.get('individual_importance', {}),
            evaluator_config=self.config.get('scoring', {})
        )